
Vision Statement

Team Name: Avalution

Project Name: Turbocharging Authenticated Storage for Blockchains

Project Sponsor: Ava Labs

Mentor: Aaron Buchwald

Team Lead: Aaron Lee

Team Scribe: Adyah Rastogi

Team Members

● Adyah Rastogi: adyah@ucsb.edu

● Wesley Truong: wesleytruong@ucsb.edu

● Justin Lang: jlang61@ucsb.edu

● Hao(Aaron) Lee: hylee@ucsb.edu

● Jiahua(Roy) Ren: j_ren@ucsb.edu

About the Project

● What problem is the project solving

○ Merkle tries utilize databases such as LevelDB, RocksDB in order to store

authenticated key-value pairs. However, this requirement adds another layer of

database systems which may be inefficient and complex.

○ A golang implementation of Firewood, the Rust implementation of the on-disk

merkle trie database.

○ Improving on the efficiency of Firewood through the implementation of

serialization, free list, revision manager, and on-disk store

● Why the problem is important

○ By creating this merkle trie we make authentication and the database more

efficient.

○ This project addresses the problem of efficiently maintaining authenticated state

on disk (Tomescu’s Challenge).

○ Impactful because 80% of the time spent executing these blocks are in Merkle

Tries and grabbing data.

○ There are many blockchain clients who use Golang, and it’s easier to call code in

the same language/integrate code from the same language.

● How the problem is solved today

○ We do not believe that there is a solution to this problem today in Golang.

mailto:adyah@ucsb.edu
mailto:wesleytruong@ucsb.edu
mailto:jlang61@ucsb.edu
mailto:hylee@ucsb.edu
mailto:j_ren@ucsb.edu


Outcome of Project

● Utilize the “Firewood” design in order to store key-value pairs in Merkle tries’ data

layout for an optimized storage system.

● Produce the first Golang implementation of the Firewood design for efficient merkle trie

storage.

Milestones

● Understanding Blockchain

● Learn Golang, Merkle Patricia Trees

● Learn the Firewood project design and AvalancheGoMerkleDB design (golang merkle

trie implementation writing to a generic key-value store that can be repurposed for this

project)

● Write high level spec for the individual components (serialization, free list, revision

manager, and on-disk store)

● Implement on-disk serialization format and disk manager

● Implement revision manager to capture added/deleted nodes and write to disk manager

● Implement free list to re-use disk space from deleted nodes

● Update disk manager to utilize the free list

● Implement on-disk version of the free list

● Perform benchmarking at various database sizes (1GB to 1TB) to evaluate performance

● Optimize performance including memory allocations and write strategy (new-space vs.

free list)

● Optional: plug directly into Avalanche C-Chain or Subnet-EVM to compare performance

of executing the entire chain on an LSM Tree vs. Firewood

● Implement the state sync functionality, allowing the system to serve queries efficiently

from previous revisions.

● Conduct benchmarking to identify and address bottlenecks for iteration

Technologies

● Rust

● Golang

● Firewood

● Avalanche Merkle DB
● LMDB - B+ Tree Based Database
● LMDBX - LMDB used by Erigon and Reth Ethereum Execution Clients

https://github.com/ava-labs/firewood
https://github.com/ava-labs/avalanchego/blob/master/x/merkledb/README.md
https://git.openldap.org/openldap/openldap/
https://libmdbx.dqdkfa.ru/

