Product Requirements Document

Project: Al Driven Writing Assistant

Team: Aziksa Al Architects (AAA)

Sponsor: Aziksa

Authors:

Jonathan Cheng, jonathancheng@ucsb.edu
Paritosh Jha, paritoshjha@ucsb.edu

Tanish Kumar, tanish kumar@ucsb.edu
Aashay Parab, aashay_parab@ucsb.edu
Vyomsarit Singh, vyomsaritsingh@ucsb.edu
Alexander Ward, alexanderward@ucsb.edu

INTRODUCTION

Problem

English is becoming the global language of business. More and more multinational
companies are mandating English as the common corporate language. This is done to facilitate
communication and performance across geographically diverse functions and business
endeavors. Thus, it is essential to be able to speak fluent business language in English. However,
there exists a gap in the language fluency level for non-native English-speaking corporate
employees to perform their duties. These employees are being contracted on the expectation that
they will be able to perform their duties in their native tongue and English. Creating a tool that
will assist them while they reach fluency is a market necessity at the moment.

Project Significance

About 1.5 billion individuals worldwide spoke English as a second or native language in
2023. 1.08 billion people are non-native speakers. However, the general consensus is that it takes
between five to seven years to achieve advanced fluency, and the business world expects
advanced fluency from their employees, especially in business and social contexts. Thus, the gap
in language fluency level for employees is a massive roadblock for workforce career growth.

Current Solutions

Currently, the gap in language fluency is being solved in a piecewise approach: using a
combination of translation (Google Translate/DeepL), peer help, email template, asking
supervisor to review communication, and language training. Language learning apps like
Duolingo and Babbel aim to teach non-native speakers to increase English proficiency through
daily exercises and games.

Vendors are introducing Al-driven writing apps which are still in very early development
phases. While some of these solutions are effective, many of them still require a high level of

mailto:jonathancheng@ucsb.edu
mailto:paritoshjha@umail.ucsb.edu
mailto:tanish_kumar@ucsb.edu
mailto:vyomsaritsingh@ucsb.edu
mailto:alexanderward@ucsb.edu

English fluency to write the email, prompt the app, or understand and correctly address the
feedback. Moreover, they do not address the time spent by employees learning the language and
achieving fluency, during which company productivity and communications may suffer.

Assumptions

Our system is built on a few significant assumptions. Primarily, we assume that our user
is a non-native English speaker, and requires some form of assistance with forming a specifically
tailored email. Additionally, although our user is not expected to be a native speaker, we still
expect them to have a baseline understanding of the language, as our first UI will be in English.
The user is also expected to be able to run an application on 10S, as the product will be deployed
as an app.

Project Outcome

Our goal is to leverage an LLM (Llama2) to develop an English learning and writing
assistant for non-native language speakers in the corporate workforce who are in a business
context. We will implement an application and an LLM API to handle features and finetune the
model - providing prompt text cleaning, adding context and examples, adding output formatting
instructions, determining the user goal, and adding business roles like customer service
representatives, sales executives, etc.

The product is designed to support our users along every step of the email prompting and
writing process. Users will be able to tailor their emails based on the writer's role, email type,
audience, and key points to be included. Additionally, the product will provide correctness,
clarity, engagement, and tone detection checks on the generated text. The writing assistant will
be available in an app that will provide users with a Ul to enter their prompt information. This
process will offload the prompt burden from the user onto our APIs, allowing non-native English
speakers to form a fluent and professional piece of writing without needing to articulately
express their thoughts in English, which is required to interact with traditional Al tools such as
ChatGPT and Bard Al.

Project Milestones

For the first quarter, our primary goal is to implement a working backend for our writing
assistant and to deploy the model to production. Some key milestones include fine-tuning the
LLM for data privacy and personalized feedback by providing context and examples, outputting
formatting instructions, and better-determining user goals. This will be achieved via an API, and
by creating several endpoints designed to handle specific features and parameters in the request.

For the second quarter, we will focus on developing the mobile app. Our milestones
include: designing the frontend of the writing assistance app (on Figma), developing the app
primarily through React Native, connecting the app with the LLM, and integrating the app with
email tools (with assistance from Aziksa mentors to handle user information). Ultimately, our
goal is to release our application to production by the end of the Winter Quarter.

SYSTEM ARCHITECTURE OVERVIEW

High Level Diagram

Liama 2 API —>

o @ python 2

Application API

User prompt gets handled before going
to the LLM API

- Prompt text cleaning

- Add context and examples to prompt
- Add output formatting instruction

Can be done via separate endpoints
for particular features or using a
parameter in the request

Customer service

HR email
response
®

Finetuned for specific tasks

Application Database

User Interaction and Design

What would you like to do today?

[Respond to Customer J [Write email to boss

Marketing email] [Other

[Key points of email:

Email writer role:

J |
[J
[Audlen-::e] [
[J |
| J |

| S N, M M —

[Generate email }

REQUIREMENTS

User stories:
1. Create endpoint to fetch list of valid options for user to select from
o Allow filtering based on category or other criteria
o https://trello.com/c/OU4DLwK9
2. End point for constructing prompts
o Implement an endpoint that takes the selected options as input and constructs a
prompt string
o https://trello.com/c/wkYMbqgle
3. Validate the selected options to ensure they are valid and compatible.
o Check to make sure that selected input can work together i.e. no conflicting
keywords which might mess up or confuse LLM.
o https://trello.com/c/fUO1ttpG
4. Define the format of the response that includes the constructed prompt.

https://trello.com/c/OU4DLwK9
https://trello.com/c/wkYMbqIe
https://trello.com/c/fUO1ttpG

o Create a format from the selected input which will be imputed into the LLM, must
be consistently formatted no matter the input
o https://trello.com/c/bdSmBkMt
5. Implement error handling for invalid input or server errors

o Create checks for invalid input or server errors and add desired behavior such as
prompting user of the error message
o https://trello.com/c/evauhMzP
6. Ensure that the API is secure, using authentication and authorization mechanisms if
needed
o Create login for users, and make sure no API keys are leaked github or in webapp.
o https://trello.com/c/uXAIQoL
7. Optimize the API for performance to handle a potentially large number of concurrent
requests.
o Optimize runtimes of any computation (no exponential time functions)
o https://trello.com/c/FWVnUYRa
8. Provide clear and comprehensive documentation for UI developers to integrate and use
the API.
o Create documentation for future use to expand on current project
o https://trello.com/c/AHcKTIBp
9. Implement versioning for the API to support future updates without breaking existing
integrations.
o This can be done using our URI Path
o https://trello.com/c/LBATulJs
10. Create abusive language filter
o Prevent abusive language input from user and output from LLM
o https://trello.com/c/BWdIUPTm

https://trello.com/c/bdSmBkMt
https://trello.com/c/evauhMzP
https://trello.com/c/uXAIQoLq
https://trello.com/c/FWVnUYRa
https://trello.com/c/AHcKTlBp
https://trello.com/c/LBATu1Js
https://trello.com/c/BWdlUPTm

APPENDICES

Generative Al Stack:
LLM - Llama2, Google Vertex Al
Cloud Environment - Google Cloud
Operating System - Linux
API Programming Language - Python, FastAPI, Uvicorn
Python Libraries:

a. Pandas

b. Numpy

c. Matplotlib

d. Sci-kit-learn
6. API Testing Tool - Postman

Nk W=

Web/Mobile App Stack:
1. Programming Languages - React Native, NodelJS, Javascript

2. Database - MySQL
3. Operating System - Linux

Source Control: Github

Issue/Bug Tracking: Github/Trello

