
FortaKnight PRD Document
Team Lead: Nicholas Brown

Members: John Lin, Andy Wu, Khalid Mihlar, Alejandro Rojas Rodriguez

Introduction:

Web 3.0 and decentralized finance (DeFi) implements cutting edge blockchain

technologies to provide user’s with financial instruments that are not reliant on

centralized financial institutions through the use of smart contracts on a blockchain

network. This technology has the potential to revolutionize the financial experience of

the user but also presents new, unprecedented challenges. The pseudonymity that

blockchain technologies offer is a double edged sword as it allows hackers to steal large

sums of money with minimal traceability. According to a report by Elliptic, DeFi users

lost an estimated $10.5 billion to theft in 2021. These hacks are performed primarily by

deploying an attacker smart contract that exhibits adversarial behavior on a blockchain

network. Our project aims to reinforce the security that the Forta network provides by

developing a bot that is capable of detecting attacker smart contracts through both static

and dynamic analysis methods. The four attack stages consist of funding, preparation,

exploitation, and money laundering. Our bot will seek to detect attacks before the

exploitation stage because funds are virtually impossible to recover after they have

been stolen due to the nature of the blockchain.

We are researching pre-existing malware detection strategies used in other areas

of computing and are planning to apply these insights to develop a detection strategy for

Web 3.0. We will look for high quality heuristics that can detect malicious activity. As

described previously, it is important to have a bot that can detect attackers as quickly as

possible because there is no value in being able to detect attacks once it is too late to

do anything about it. It is also important to avoid having a high false positive rate. Since

most transactions on the blockchain are not malicious, a high false positive rate means

that a large majority of our alerts will be for benign transactions which will cause users

to have less trust in our alerts and will make the alerts for real issues more difficult to

spot. Our goal is to strike a balance between speed and accuracy to ensure that our bot

is as useful as possible.

We also aim to leverage machine learning techniques to more accurately detect

suspicious activity. Since we have access to an in-depth dataset of past attacker smart

contracts, we will be able to use this data to train a machine learning model that can

detect malicious activity. We will study this data to find useful features that can indicate

that a smart contract is malicious and use these features in a model. If this approach is

more effective than using heuristics in terms of speed and accuracy we will use this

instead of the heuristics. We can potentially use a combination of both approaches to

get better accuracy for our alerts.

We will deploy our bot on the Forta Network which provides a simple way for

users to subscribe to alerts and receive them in a convenient way. This will allow our bot

to easily examine activity on the blockchain and log information for users. The Forta

Network allows us to focus on our detection strategy without having to worry as much

about how we will examine the blockchain and communicate with our users.

System Architecture Overview

User Interactions and Design:

The user will be notified when an attacker smart contract was identified by our

bot. This would give the user an opportunity to mitigate the attack before any damage is

done. Our detection bot will be able to send alerts on suspicious activity to users who

have signed up to receive Forta Alerts.

High Level Diagram

Requirements:

1. As a user, I can subscribe to get an alert before an unauthorized smart contract

exploits my contract protocols so that I can allow my system to deploy necessary

resources to stop the exploitation before any money is lost.

Github Issue:

● Scenario 1: The bot detects an unauthorized smart contract before the

exploitation phase and alerts the user system to deploy resources to stop

exploitation by the malicious smart contract.

● Scenario 2: The bot detects an unauthorized smart contract, but fails to

alert the user system before the exploitation phase. The bot will deploy a

warning message stating that an attack has, or may be currently

occurring.

2. As a user, I can access the bot detection logs so that I can check on all attacks

that have occurred on my system and to check bot activity if the system doesn’t

correctly detect an attack.

Github Issue:

● Scenario 1: The user requests an activity log, and the bot relays all

detected attacks in chronological order.

● Scenario 2: The user requests an activity log, and the bot relays all timely

detected attacks, delayed detections, and money lost (if any)

3. As a user, I can search up a specific attack that has occurred on my system by

clicking on the navbar so that I can instantly look up the attack instead of looking

through the whole log.

4. As a user, I can filter detection bot logs by day, week, month, or year so that I can

limit the amount of detection bot logs I see because I am interested in detection

bot logs that happen on a specific date range.

5. As a user, I can download the bot detection logs so that I can have a copy of the

bot detection logs.

Appendices:

GitHub to manage our Code Base, along with their Kanban Board

Python 3 to write the bot

Pytorch/numpy libraries for machine learning

Using Solidity to apply the smart contracts for detection

