

FLARE

Fire Likelihood and Risk Estimation

Kelly Lin, Alvin Tu, Nick Ong, Steven Chang, Shuya Shou

The Problem

Goals

Research different machine learning models

Develop accurate approaches to wildfire prediction

Visualize fire risk for individual or professional use

Existing Solutions

Mathematical Models

Traditional Machine Learning

Deep Learning Approaches

Datasets

UCSB Special thanks to Dr. Isaac Park

Google Earth Engine

Logistic Regression

Baseline Model

Trained from 2003-2013

Predictions for 2014-2017

 \mathbf{i}

Average ROC/AUC Score: 0.68

Variational Autoencoder

Spatial Dependencies

Preprocessed data into images

Average AUC: 0.75

 \mathbf{i}

10% improvement over LR

LSTM + CNN Hybrid

Spatial & Temporal Dependencies

Loss function

 $L = |y_{true} - y_{pred}| \times min (10^5, max (1, 10^{(y_{true} - y_{pred}) \times 100/k}))$

Further Analysis

Effect of Time of the Year on Model Performance

Evaluation Month

Conclusion

••• Outperformed existing models by 2.6%

--- Applicable for property/area fire risk assessments

Interactive visualizations for California

THANK YOU

Be aware, be prepared, trust Flare