I 💚 U
(I See You)

A pre-consultation tool for virtual health care
404: Team Name Not Found

Teladoc Mentors:
- John O'Donovan
- Sushil Bharati
- Matias Massetti
- Juan Jouglard
- Javier Iparraguirre
- Gonzalo Arro
- Gabriel Salazar
- Catherine Ho
- Ole Eichhorn

Ishana Narayanan
Team Lead Chatbot

Sophie Groenwold
Scribe Chatbot

Steven Huynh-Tran
Frontend

Anthony Palomera
Backend

Evan Yip
Frontend

Katelyn Zhang
Backend
What We’ll Cover

01 Problem & Solution
02 Demo
03 Chatbot
04 Backend
05 Challenges
06 Milestones
The Problem & Solution

Transparency and efficiency in telehealth consultations
Background

Telehealth: medical care without in-person visits
Since March 2020, the use of telehealth services has expanded to 38 times its pre-pandemic size.

Teladoc: a major player in the telehealth industry
Teladoc delivered 10.5 million virtual visits in 2020.
The Problem

→ Transparency in patient-physician communication
 - Transparency in medical visits is extremely important to a patient's understanding and sense of autonomy.\(^1\)
 - In a telehealth context, communication issues are heightened by “black box” worries.\(^2\)

→ Efficiency through pre-consult screenings
 - Screenings done during consultations are often repetitive and use up time that could be better spent for both patient and physician.
 - Current examples of pre-consult screening software do not draw conclusions from raw patient data.

\(^1\)Identifying Transparency in Physician Communication, National Library of Medicine (2011)
\(^2\)Privacy and Security Concerns in Telehealth, AMA Journal of Ethics (2014)
Our Solution

01 Pre-consultation
Patient completes symptom screening in portal

02 Analyze Info
Chat logs stored, analyzed, and initial diagnosis made

03 Before Appointment
Physician reviews pre-screen and diagnosis

04 After Appointment
Physician inputs diagnosis and care steps in portal
02
Demo
03

Chatbot

How the patient completes their pre-consult
Chatbot Architecture

- **Amazon Lex**
- **DynamoDB**
- **AWS Lambda**
- **Infermedica API**

Process Flow

1. **Amazon Lex**
 - Elicit appointment ID
 - Provide patient symptoms

2. **AWS Lambda**
 - Retrieve medical information
 - Store patient diagnosis
 - Return appointment info

3. **DynamoDB**
 - Retrieve medical information
How our patient-physician information is stored
User logs in

Bot asks for symptoms

Schedule appointment and retrieve information

Gets and stores patient information

Patient Sequence
Challenges

Hurdles we've faced so far

→ Getting started

→ Reconciling aspects of our tech stack

→ Sifting through outdated documentation
Milestones

Our progress so far and plans for Winter 2022
Milestones reached

End of October
Clear vision on project functionality

End of November
Frontend, Backend, Chatbot integration for basic user experience

Mid November
First chatbot flow

Today
Clear vision on project functionality

Start

End of November
Frontend, Backend, Chatbot integration for basic user experience
Key Next Steps

Chatbot
Make more dynamic, currently deterministic. Include chat log summarization

Seamless Communication
Examine better communication architectures

User Experience
Refine user experience for a pleasant flow
Thank You

In particular, to:
Our Teladoc mentors
Professor Su & Mason

Any Questions?
Physician logs in

Select an appointment

Retrieve upcoming appointment information

Gets patient information and consult summary
Backend

1. Patient
 - PatientID
 - name
 - age (birthday)
 - gender
 - pre-existing conditions — array of strings
 - active medications

2. Appointment Table
 - appt ID
 - patient ID
 - doctor
 - app type
 - day/time

3. General Consult
 - appointment ID
 - patient ID
 - symptom
 - initial diagnosis (intermediate)
 - doctor diagnosis

- given to relay at when signing up
- for account

JSON object

{id: name, }
Query an Item from a Table

{"appointment_id":{"N":"2222222"},"appointment_type":{"S":"General Consult"},"doctor":{"S":"Carol Jackson"},"appointment_time":{"S":"1838555300"},"patient_id":{"N":"1"}}
Insert Data to a Table

The image shows a website interface for inserting data to a table. The interface includes a form with fields for appointment_id, patient_id, appointment_time, and doctor. It also displays a table with columns for appointment_id, patient_id, appointment_time, and doctor, showing some sample data:

- Appointment ID 1010, Patient ID 1010, Appointment Time 1638558920, Doctor Steve Robins
- Appointment ID 123, Patient ID 456, Appointment Time 1641847500, Doctor Ryland Gerald
- Appointment ID 4, Patient ID 1, Appointment Time 1638558900, Doctor Ruth Robinson
- Appointment ID 1011, Patient ID 1011, Appointment Time 1638558950, Doctor Kelly James
- Appointment ID 1012, Patient ID 1012, Appointment Time 1638558940, Doctor Jerry Main
- Appointment ID 1, Patient ID 2, Appointment Time 1638225000, Doctor Christopher Anderson
- Appointment ID 0, Patient ID 2, Appointment Time 1637872200, Doctor Christopher Anderson