

UCSB | Kaiwen Li, Alex Mei, Jasun Chen, Jayden Yu, Yuyuan Wang AgMonitor | Thomas Kuo, Olivier Jerphagnon

The New York Times

PG&E Begins Power Shut-Off to 179,000 California Customers

https://www.nytimes.com/2019/10/23/business/energy-environment/california-power.html

Percentage of Distributed Solar Systems Paired with Energy Storage

■ AgMonitor UC SANTA BARBARA

https://www.seia.org/initiatives/solar-plus-storage

SOLAR + BATTERY = YOU ARE A MICROGRID OWNER!

CRUX OF THE PROBLEM

- How should you set the battery threshold?
- How should you **schedule your flexible loads**?
- **Considerations:**

Future weather

Risk tolerance

Cost-saving Renewable-energy integration

OUR SOLUTION

- Al-optimized personal energy management recommendations
- Historical microgrid usage visualization

AgMonitor

UC SANTA BARBARA

Action Workflow (Mobile Friendly!)

Live Demo*

*barring any technical difficulties

Text Message Today 2:55 PM

Sent from your Twilio trial account - Based on weather forecasts and historical data for tomorrow, the ideal reserve percentage for your battery is 30 percent, and you should use your flexible loads. The best times for you to start using energy tomorrow is from 11:00AM to 11:30AM. Please visit https://smartgridfrontend.vercel.app/ for more details.

CONTINGENCY

AI - DESIGN PHILOSOPHY

Data Inputs Optimization

AI - HISTORICAL METER DATA

Data Inputs

Optimization

AI - RESULTS

	Self Sufficiency
$\mathbf{Current}$	01.007
Utilization	91.970
\mathbf{Smart}	08 50%*
\mathbf{Grid}	90.070
Theoretical	100.007
Optimal	100.0%

*average expected performance over a week

C SANTA BARBARA

Save the planet. And your wallet.

Special Thanks :)

Olivier Jerphagnon

Thomas Kuo

C SANTA BARBARA

AI - BATTERY MODEL

Predicting the battery's behavior given

- actual starting battery level
- actual energy usage
- actual generation

R² Score:97.41%Mean Squared Error:1.78

AgMonitor UC SANTA BARBARA

