
Project Requirements Document v2

Company: CJ Affiliate

Project title: The Great, Fantastic Project

Team: The Great, Fantastic Team

Team Lead: Kyle Ng

Team Scribe: Nathan Guan

Team Members and Emails:

● Kyle Ng (kyleng@ucsb.edu)

● Nathan Guan (nguan@ucsb.edu)

● Minliao Li (minliao@ucsb.edu)

● Zhuo Chen (zhuo@ucsb.edu)

● Joey Zhang (chongyu@ucsb.edu)

Background:

Today’s affiliate business sees a world blooming with opportunities, millions of

advertisement offers lack the means to connect with a provider while the providers

struggle for a perfect fit. The providers don't have to be professional enterprises. Take

the example of home bloggers. Home bloggers blog about something they are

passionate about and they want to share their passion with their readers. For them to

recommend products, they would need to conduct hours and hours of research. Not

mailto:zhuo@ucsb.edu
mailto:chongyu@ucsb.edu

only that, new products are added to the market every day and prices are always in flux.

There is currently no way for the blogger to do all this research in a timely manner and

still provide the best offers/products to their loyal readers.

Goal:

The goal of this project is to provide a way for bloggers to recommend deals

and/or projects to their readers based on their blog topic(s). With this product, they input

a block of text to be parsed in to keywords to find offers that are relevant to the blog’s

topic. From there, our web application will supply offers based on those keywords to the

blogger in the form of a list. The blogger will be able to select which offers they want to

post onto their site through a HTML snippet. Additionally, the blogger may be able to

save the offers for a future date and filter the offers.

Input:

The input of the web application will be text that the user wants to find offers for.

From there, the block of text will be sent to the server so that it can parse and find

relevant keywords to use to query the database. The block of text could be of any length

and could contain anything that the user wishes to be included. Preferably, the input text

has a topic in mind that does not digress from the main topic at hand, but the machine

learning algorithm will hopefully weigh the irrelevant keywords differently. We are

assuming that the blogger will provide the application with a couple paragraphs of text

with some sort of topic in mind.

Output:

The output on the web application will be a list of offers best suited for the user

based on their selected keywords. This output will most likely contain multiple offers for

any combination of keywords selected. From the offers displayed to the user, one will

be able to select however many of the offers that they want to use for their blog. The

process for getting the offers a user wants onto their blog will be easy because they will

be able to get an HTML snippet from our website that can be pasted onto their blog.

This HTML snippet will then display the relevant offer on their blog once embedded in

said blog.

Procedure:

We will produce an algorithm that will take in sample data from CJ and filter out

the irrelevant products and offers. Then we’ll pass these filtered results into another

database which is ready for presenting to the user. Then we will display all of the offers

fitting the user’s need (the user’s need is defined by their inputted or selected keywords

at this stage) on a separate web application. We will also build an algorithm which

promotes ads based on our filter (in this case, our filter is the trending on social media).

This will allow bloggers to advertise ads that’s interesting to the viewers, maximizing the

profit they may achieve through their blogs. We plan on using AWS Amazon

Comprehend to assign weights to certain words in the text after we parse it so we can

determine the correct offers to present to the user. We also plan on using Google

Trends API and potentially Twitter API to find current trends to help filter our

Milestones:

● MVP: Web app with a display of “good” offers

● Algorithm that uses keywords as input and output data with those key

works in the description

● Takes in sample data instead of hard-coded data

● Search bar for list of keywords

● Selectable keywords for blogger to use

● Buttons to start the sorting process

● Output HTML/JavaScript code for the blogger to post on their blog

High Level Diagrams:

UI Design:

Use Cases:

1. As the web application, I should be able to have a form to input text and

display the offers in a table.

Test: Have an input box that can take in text and output table that can display

offers.

Time Estimate: 1 day

https://github.com/minliaoli/CJ-Affiliate-Project/commit/a837e034a84b4e96cd614

2eac0590dcc5fcb7b2f

2. As a blogger, I want to see a diagram of the trends online, so I can get a

sense of what is popular.

Test: Click on ‘Get Offers’ button and then a sidebar will pop up with charts and

metadata.

Time Estimate: 3 days

https://github.com/minliaoli/CJ-Affiliate-Project/commit/0627151c678a81a33cfef6

c861dfaf67715382e6

3. As a blogger, I want to be able to sort the offers presented to me on the

web by features, so I can choose the offer that I think is best.

Test: I select a sorting criteria, then the offers displayed on the website changes

to correspond to the selection.

Time Estimate: 2 days

https://github.com/minliaoli/CJ-Affiliate-Project/issues/8

4. As a offer selection algorithm, I want to take seasonal trending (like

holidays, sports season and so on) into my measurement.

Test: seasonal trending factor added into the algorithm.

https://github.com/minliaoli/CJ-Affiliate-Project/commit/a837e034a84b4e96cd6142eac0590dcc5fcb7b2f
https://github.com/minliaoli/CJ-Affiliate-Project/commit/a837e034a84b4e96cd6142eac0590dcc5fcb7b2f
https://github.com/minliaoli/CJ-Affiliate-Project/commit/0627151c678a81a33cfef6c861dfaf67715382e6
https://github.com/minliaoli/CJ-Affiliate-Project/commit/0627151c678a81a33cfef6c861dfaf67715382e6
https://github.com/minliaoli/CJ-Affiliate-Project/issues/8

Time Estimate: 4 days

https://github.com/minliaoli/CJ-Affiliate-Project/commit/7c26b17271f26bf6ddf170

6644f11ef0575fdf0d

5. As a parsing algorithm, I can query offer data from Firebase so I can

populate the server with data.

Test: I can query the database with the parsed keywords and return any offers

that contain those words.

Time Estimate: 7 days

https://github.com/minliaoli/CJ-Affiliate-Project/commit/21f6a33412dc079516577f

5f24c7fd86e5d4c221

6. As a trends reading interface, I can look at current trends on Twitter to

output more relevant offers to the user.

Test: The algorithm runs a GetTrend method whenever a timer is called, then the

GetTrend method returns a list of current trending keywords to the algorithm.

Time Estimate: 5 days

https://github.com/minliaoli/CJ-Affiliate-Project/blob/Google_Trends/pytrends/dail

ydata.py

7. As a blog parser, I can take in a block of text and extract and output

keywords from it. Then I can classify these keywords into broader

categories which can be used to match specific categories from offers.

Test: I can take a segment of text as input, I can output a list of keywords that’s

related to the text, as well as the tag that’s linked to these keywords.

Time Estimate: 14 days

https://github.com/minliaoli/CJ-Affiliate-Project/commit/75e105827caecf1968f16a

8bf76b1ac85dbc9e7d

https://github.com/minliaoli/CJ-Affiliate-Project/commit/7c26b17271f26bf6ddf1706644f11ef0575fdf0d
https://github.com/minliaoli/CJ-Affiliate-Project/commit/7c26b17271f26bf6ddf1706644f11ef0575fdf0d
https://github.com/minliaoli/CJ-Affiliate-Project/commit/21f6a33412dc079516577f5f24c7fd86e5d4c221
https://github.com/minliaoli/CJ-Affiliate-Project/commit/21f6a33412dc079516577f5f24c7fd86e5d4c221
https://github.com/minliaoli/CJ-Affiliate-Project/blob/Google_Trends/pytrends/dailydata.py
https://github.com/minliaoli/CJ-Affiliate-Project/blob/Google_Trends/pytrends/dailydata.py
https://github.com/minliaoli/CJ-Affiliate-Project/commit/75e105827caecf1968f16a8bf76b1ac85dbc9e7d
https://github.com/minliaoli/CJ-Affiliate-Project/commit/75e105827caecf1968f16a8bf76b1ac85dbc9e7d

8. As a blogger, I want to get the HTML/JS code for the selected ad so that I

can paste it onto my website to display the ad.

Test: The HTML/JS code for all possible ads on the website is able to be copied

by the user.

Time Estimate: 1 day

https://github.com/minliaoli/CJ-Affiliate-Project/blob/loopback_react/client_src/src/

components/GetOffer.js

9. As the offer selection algorithm, I want to be able to output the top 5 offers

based on trends and keywords inputs.

Test: I have a list of trending keywords and parsed offers in database, I match

these and assign high weight to offers that matches best with the trend. I then

output a list of 5 offers which have the highest weight.

Time Estimate: 5 days

https://github.com/minliaoli/CJ-Affiliate-Project/blob/loopback_react/client_src/src/

components/GetOffer.js

10.As a blogger, I want to be able to login to access the web application and

access the offers recommended to me in history.

Test: Login screen that uses authentication to see if login is accepted,

Then pops the user into a personal page which contains history offers.

Time Estimate: 4 days

https://github.com/minliaoli/CJ-Affiliate-Project/blob/master/OfferManager/offerMa

nager/offers/pyrebase_settings.py#L17-L20

11.As a blog-offer matching algorithm, I can take the keywords generated by

both the blog parser and offer parser in database, match and rank them

https://github.com/minliaoli/CJ-Affiliate-Project/blob/loopback_react/client_src/src/components/GetOffer.js
https://github.com/minliaoli/CJ-Affiliate-Project/blob/loopback_react/client_src/src/components/GetOffer.js
https://github.com/minliaoli/CJ-Affiliate-Project/blob/loopback_react/client_src/src/components/GetOffer.js
https://github.com/minliaoli/CJ-Affiliate-Project/blob/loopback_react/client_src/src/components/GetOffer.js
https://github.com/minliaoli/CJ-Affiliate-Project/blob/master/OfferManager/offerManager/offers/pyrebase_settings.py#L17-L20
https://github.com/minliaoli/CJ-Affiliate-Project/blob/master/OfferManager/offerManager/offers/pyrebase_settings.py#L17-L20

based on the weight suggested by the trends interpreter, then output to

database.

Test: Be able to obtain the ads that correspond to current trends with the highest

ranked ones first.

Time Estimate: 7 days

https://github.com/minliaoli/CJ-Affiliate-Project/blob/Google_Trends/DetectKeyPh

rases

12.As a react framework, I want to be able to make post/get requests to

MongoDB, so that I can talk to the offer algorithm through a medium.

Test: Be able to communicate with MongoDB to get desired information about

the offers.

Time Estimate: 10 days

https://github.com/minliaoli/CJ-Affiliate-Project/blob/python_back_react_front/Offe

rManager/offerManager/manage.py#L28-L32

13.As a trend interpreter, I can take the trends provided to me by a trend

reading API and generate a weight sheet for the matching algorithm, then

output results to a database. This weight sheet can determine the rank of

offers.

Test: Obtain a weight sheet with the ranks of offers based on current trends that

are going to be considered.

Time Estimate: 3 days

14.As an offer parser, I want to be able to grab offers from the database, parse

its keywords, and store them into a database.

Test: Be able to see all of the keywords for specific offers in a database.

https://github.com/minliaoli/CJ-Affiliate-Project/blob/Google_Trends/DetectKeyPhrases
https://github.com/minliaoli/CJ-Affiliate-Project/blob/Google_Trends/DetectKeyPhrases
https://github.com/minliaoli/CJ-Affiliate-Project/blob/python_back_react_front/OfferManager/offerManager/manage.py#L28-L32
https://github.com/minliaoli/CJ-Affiliate-Project/blob/python_back_react_front/OfferManager/offerManager/manage.py#L28-L32

Time Estimate: 7 days

https://github.com/minliaoli/CJ-Affiliate-Project/blob/python_back_react_front/Offe

rManager/offerManager/manage.py#L28-L32

15.As a scheduler, I can update all the data and algorithms stored in the

backend periodically. I make calls to all the functions that update these

procedures every 7 days, then the database updates.

Test: Able to have an up-to-date database so that offers displayed on the

website are always relevant.

Time Estimate: 10 days

16.As a blogger, I want to see the webpage with CJ aesthetic styling.

Test: Webpage is styled with CJ Affiliate color scheme and/or CJ frontend

components.

Time Estimate: 2 days

17.As a react framework, I can forward the text input from a blogger to the

backend. If it is too large, I can break it into fragments.

Test: Be able to obtain a blogger’s inputted text in the backend.

Time Estimate: 10 days

18.As a blogger, I want to be able to choose from three different kinds of input

methods: choosing keywords, inputting text, or inputting blog url.

Test: Have a UI on the website with the three various input types.

Time Estimate: 2 days

19.As a blogger, I want to see suggested offers listed on pages, and I want to

be able to jump to any page and choose how many offers are listed on each

page.

https://github.com/minliaoli/CJ-Affiliate-Project/blob/python_back_react_front/OfferManager/offerManager/manage.py#L28-L32
https://github.com/minliaoli/CJ-Affiliate-Project/blob/python_back_react_front/OfferManager/offerManager/manage.py#L28-L32

Test: Have a UI that allows the user to select number of offers per page.

Time Estimate: 5 days

20. As a blogger, I want to be able to know when offers expire and when new

offers will be reloaded.

Test: Query the server to see if offers have expiration dates and display them on

the output page. Have an option to see if new data is loaded or not.

Time Estimate: 1 day

UML Diagrams:

Class Interaction Sequence Diagrams:

User Interaction Sequence Diagrams:

Overview:

● Sprint 1:

○ Choose tools or APIs to use

○ Outline workflow

○ Work on front end web app and tool to read in offers (seperate for now)

● Sprint 2:

○ Continue working getting web app up and running

○ Work on simple algorithm that takes in keyword and output data

○ Combine tools with web application front end

○ PRDv1 release

○ Work on test cases

○ Get database up and running

● Sprint 3:

○ Work on tool to sort relevancy of offers

○ Improve algorithm with the aforementioned tool

○ Improve web app with better UI

○ Develop more test cases

● Sprint 4:

○ Assure bugs are fixed and MVP is ready for short demo

○ Test cases pass

○ All hard coded data is completely removed

Appendix:

Technologies Employed:

● Heroku

● Code from CJ

● Frontend: HTML, CSS, JavaScript, ReactJS, Loopback

● Backend: Python

● Natural Language Process API

