
Uber for Vendors (PRDv1)
by

Github Reapers

Authors

● Frank Lee (Lead) franklee@ucsb.edu
● Raul Pulido (Scribe) raulido@outlook.com
● Edward Yuen (Developer) edwardyuen@umail.ucsb.edu
● Wei-Yee (Developer) weiyee@umail.ucsb.edu
● Eric Shen (Developer) eric10@umail.ucsb.edu

Intro

Background
Vendors are people/companies that provide property-related services such as plumbers
and electricians. The current process of hiring vendors and scheduling appointments is
messy inefficient, and can even involve third parties; the vendor, the landlord and the
tenant must agree on when to meet. Additionally, vendors and clients have to handle
multiple different jobs concurrently while looking for new jobs. This makes it difficult to
properly schedule appointment times, and often prohibits an open communication
pipeline between the vendors and the tenants themselves. Thus, we are introducing
Uber for Vendors, a web application dedicated to making the whole process a lot easier
and cleaner. Why go to the trouble of setting up multiple different jobs when a web
application can do all of that for you. Forget having to navigate multiple different
websites to find vendors when everything can be done for you. Uber for Vendors is here
to help.

What problem are we trying to solve?
Currently, one of the biggest problems in the property-related service jobs is
communication between clients and vendors. For example, a popular method of finding
vendors is to go on craigslist and post a listing in the general labor category and wait for
vendors to call. This process is very inefficient since it relies on the fact that clients will
answer the call and because it doesn’t give clients direct access to vendor’s
qualifications. Uber for Vendors will address this problem by automatically linking clients
with vendors’ information and linking a vendor’s rating to assure qualification.

mailto:franklee@ucsb.edu
mailto:raulido@outlook.com
mailto:edwardyuen@umail.ucsb.edu
mailto:weiyee@umail.ucsb.edu
mailto:eric10@umail.ucsb.edu

Additionally, vendors will also have the ability to review client’s ratings and information
to judge whether they want the job or not.

Why is this problem important?
Currently, one of the most popular real estate practices is to buy properties, fix them,
and sell them for a higher price for a profit. This practice is beneficial both for the
landowner and for vendors hired to fix the property issues. By expediting the interaction
between vendors, landowners, and tenants we are making the process much more
efficient. Clients are able to find vendors much quicker and vendors are able to
complete a lot more jobs. This is important because we are essentially increasing the
potential income gain that both clients and vendors can make. But most importantly, by
making this process more efficient we are also indirectly helping in the beautification of
communities.

Addressing the lack of efficient interaction between clients and vendors also helps
sponsor independent vendors who might struggle competing with current major
contractors. The process of finding jobs is so fragmented that at often times clients may
miss out on potential vendors due to the lack of promotion. For example, vendors trying
to find work on craigslist might miss opportunities that clients post on a facebook group.
By centralizing the process on to one web application we are helping independent
vendors find more opportunities.

Apartment landowners might lack the proper funding to have an onsite
repair/maintenance crew. By increasing the interaction between clients and vendors we
are also helping individual landlords address tenant issues much quicker and potentially
cheaper.

How is this problem addressed today?
Often, the tenant informs the landlord of a problem. Eventually, the landlord will look
through multiple sources to find and reach out to an external vendor. Then the landlord
must manually schedule an appointment time with the vendor. Often, this scheduling is
inconvenient for the tenant as it may take a long time and may even conflict with the
tenant’s timetable.

The result of the current way this problem is addressed is that the landlord may have no
way to see if they are overpaying a vendor or if the vendor is qualified enough for the
job. The vendor might also not be able to properly schedule an appointment time due to
lack of communication and miss a potential job due to poor scheduling practice.

Tenants may also be left frustrated from waiting unnecessary lengths of time for an
issue to be completed despite not knowing the landlord's struggle.

System Architecture Overview

High Level Diagram

User Interaction and Design
All Users
The first instance of interaction between any user and our application is Signing up for
our app. The users will be able to input their email, password, name, the type of User
they are (Tenant, Landlord, Vendor), and other important account credentials upon
creating an account. Upon doing so, that User will be able to login through our signin

web interface and access their profile and user type specific features tied to their
account.

Tenant Users
Tenant Users will be able to sync their calendar with our application in order to provide
inputs of what dates and times they are available for a vendor to come. When a Tenant
user needs a service done, they can fill out a request form and submit it through our
application. The request form will include the service type, a short description of the
issue, and other relevant details to help move forward with the problem. The Tenant
User will then have to wait a period of time for our algorithm to fully schedule the
appropriate appointment before being notified of a successful assignment. This
assignment will automatically be added into the Tenant’s calendar and a notification will
be sent to confirm the appointment. The Tenant will have the option to cancel or
re-schedule an appointment if they become busy later.

Landlord Users
Landlord Users will also have access to a calendar page that lists the different service
appointments for their tenants. Landlord will also be able to merge their personal
calendar to the tenant service one so that they can see when these services are done in
respect to their own schedule. Whenever a Tenant requests for a service to be done,
the respective Landlord will be notified as well. As the authorizing party, the Landlord
must give approval for the service before the service is officialized. In addition, the
Landlord can choose to either blacklist or whitelist vendors in order to form a set of
acceptable vendors the Landlord is satisfied with. The Landlord will have access to
reviews of different Vendors and can decide to either manually pick out the ones he
wants or use pre-built filtering to find a desired set (best reviews, fastest work, local
workers, etc.) The Landlord can also choose for the appointment to be aligned with their
own schedule so they can come monitor the service being done (which will also notify
the Tenant of the Landlord’s decision). In addition, if the Landlord decides the service is
no longer necessary, they can also choose to cancel the service.

Vendor User
The Vendor User will have to sync their calendar into our application so that we have
the available service times. The task time shown on the Tenant side will be estimated,
but each Vendor will have the option to put the time it takes them to personally complete
the task. These appointments will automatically be scheduled so a Vendor will be able
to let these appointments accrue without having to put too much effort into discovering
jobs. These jobs will be assigned with an appropriate buffer time for the Vendor to

respond to in order to avoid last minute cancelations. The Vendor will be able to see the
jobs, the general description, and other details in the calendar.

Prototyping Code, Tests and Metrics

GitHub: https://github.com/franklee26/appfolio-uber-for-vendors

Sample commits:

● Integrating Google Calendar API with a new rails Calendar controller:
https://github.com/franklee26/appfolio-uber-for-vendors/commit/077dde85639c37b1ed4b
6b362e12256120377899

● Removed development.log from remote branch:
https://github.com/franklee26/appfolio-uber-for-vendors/commit/013740925b8c967cfc41
b71c15bfa35b27a19ed6

● Created Landowner Static page and model:
https://github.com/franklee26/appfolio-uber-for-vendors/commit/b606d930e61474d7d61c
02aa02f1167092b14f19

● Learning to use Ruby on Rails, HelloWorld:
https://github.com/franklee26/appfolio-uber-for-vendors/commits/Raul_Hello_World

● Adding Tenant resource to show Tenants
https://github.com/franklee26/appfolio-uber-for-vendors/commit/7ca63ea7474cc32764e4
bb7a75dcd52e7ef538df

● Added Tenant tests, Tenant Controller and a new login page
https://github.com/franklee26/appfolio-uber-for-vendors/commit/418ceb12092a1f91ca93
a1ebc555fbe341c3dcf5

● Basic list of vendors and their occupation
https://github.com/franklee26/appfolio-uber-for-vendors/commit/3a2d61019e955ee35195
c7dad1b64af87700eae5

Requirements

User Stories
User Story #1: Signup Page
Actors: Tenant, Vendor, and Landowners
Pre-conditions: User must have access to the web application and locate the signup
button.

https://github.com/franklee26/appfolio-uber-for-vendors
https://github.com/franklee26/appfolio-uber-for-vendors/commit/077dde85639c37b1ed4b6b362e12256120377899
https://github.com/franklee26/appfolio-uber-for-vendors/commit/077dde85639c37b1ed4b6b362e12256120377899
https://github.com/franklee26/appfolio-uber-for-vendors/commit/013740925b8c967cfc41b71c15bfa35b27a19ed6
https://github.com/franklee26/appfolio-uber-for-vendors/commit/013740925b8c967cfc41b71c15bfa35b27a19ed6
https://github.com/franklee26/appfolio-uber-for-vendors/commit/b606d930e61474d7d61c02aa02f1167092b14f19
https://github.com/franklee26/appfolio-uber-for-vendors/commit/b606d930e61474d7d61c02aa02f1167092b14f19
https://github.com/franklee26/appfolio-uber-for-vendors/commits/Raul_Hello_World
https://github.com/franklee26/appfolio-uber-for-vendors/commit/7ca63ea7474cc32764e4bb7a75dcd52e7ef538df
https://github.com/franklee26/appfolio-uber-for-vendors/commit/7ca63ea7474cc32764e4bb7a75dcd52e7ef538df
https://github.com/franklee26/appfolio-uber-for-vendors/commit/418ceb12092a1f91ca93a1ebc555fbe341c3dcf5
https://github.com/franklee26/appfolio-uber-for-vendors/commit/418ceb12092a1f91ca93a1ebc555fbe341c3dcf5
https://github.com/franklee26/appfolio-uber-for-vendors/commit/3a2d61019e955ee35195c7dad1b64af87700eae5
https://github.com/franklee26/appfolio-uber-for-vendors/commit/3a2d61019e955ee35195c7dad1b64af87700eae5

Use-case: As a user, I can choose among three signup options signifying whether I am
a tenant, a landlord, or a vendor. I need a valid email and a password to sign up.
Acceptance Test:

- There exists a single sign up page that gives users three sign-up options (tenant,
landlord, vendor)

- If a user clicks on one of the signup buttons/links, he will then be prompted to fill
in a valid email and a valid password. (email : [string]@[string].[string] and the
password has 10+ characters)

- If user submission is valid, then the email and password attributes are pushed
into the database and are greeted with a success page.

- If the user submission is invalid, then attributes aren’t pushed into DB and are
prompted with error page.

User Story #2: Login Page
Actors: Vendor, Landlord, and Tenant
Pre-conditions: Users must have signed up for an account before attempting to log in
and must have access to the web-app.
Use-case: As a user, I can fill the login form with my account credentials, submit my
account credentials, and have access to my Uber for Vendors account.
Acceptance Criteria:

- The account information is retrieved from the application’s database, and is
displayed on my application indicating that login was successful

- The account credentials submitted are invalid and I receive an error message
from the application indicating that login was unsuccessful

User Story #3: Vendor Submit Availability
Actor: Vendor
Pre-conditions: Vendors are signed in and have internet access.
Use-case: As a vendor, I can put in my schedule availability and submit it to the back
end.
Acceptance Criteria:

- Vendors are greeted with a list of times for every hour from 9am-6pm
- Vendors are able to select and deselect available times but must select at least

one before submitting
- If at least one time is checked then the time is pushed into the Vendor database

and Vendor is greeted with a success page
- If no times are checked then nothing is pushed into the database and the Vendor

is prompted with an error page

User Story #4: Tenant Submit Availability
Actor: Tenant
Pre-condition: Users will already have signed up with an account and must be logged
into their account.
Use-Case: As a Tenant user, I can put in my schedule availability and submit it to the
back end so the vendor service can be done at a time convenient for me
Acceptance Criteria:

- Tenant are greeted with a list of times for every hour from 9am-6pm
- Tenant are able to select and deselect available times but must select at least

one before submitting
- If at least one time is checked then the time is pushed into the Tenant database

and Tenant is greeted with a success page
- If no times are checked then nothing is pushed into the database and the Tenant

is prompted with an error page

User Story #5: Landlord Submit Availability
Actor: Landlord
Pre-Condition: Users will already have signed up an account and have logged into
their account through the login page.
Use-case: As a Landlord user, I can put in my schedule availability and submit it to the
back end so I can oversee the work done if I want.
Acceptance Criteria:

- Landlord are greeted with a list of times for every hour from 9am-6pm
- Landlord are able to select and deselect available times but must select at least

one before submitting
- If at least one time is checked then the time is pushed into the Landlord database

and Landlord is greeted with a success page
- If no times are checked then nothing is pushed into the database and the

Landlord is prompted with an error page
-

User Story #6: Tenant requests Job
Actor: Vendor
Pre-condition: Tenant has an account.
Use-case: As a tenant, I can request a job so I can get a service done
Acceptance Criteria:

- On this page, the Tenant will have to pick the type of job (which will influence the
time the job will take, mvp will not include this). This will route the job to the
landlord and will provide the vendor for this job a list of times that the vendor can
pick to take the job.

User Story #7: Landlord search for Vendor
Actor: Landlord
Pre-condition: Landlord has logged into his account and has accessed find landlord
page
Use-case: As a landlord, I can search through a list of vendors to select a vendor I want
to work with.
Acceptance Criteria:

- Will list pages of vendor profiles
- Allows landlords to filter vendors based on what they specialize in ex: search for

all electricians
- Allows landlord to filter the list by location of the vendor
- Will provide a search bar for the landlords to search for a specific vendor

User Story #8: Vendor Calendar
Roles: Vendor
Preconditions: Vendors must have signed up for an account before attempting to log in
and must have access to the web application.
Use-case: As a vendor, I can see a list of jobs assigned to me so I know what jobs I
have to do that week.
Acceptance Criteria:

- A page has a calendar that contains all of the vendor’s scheduled jobs
- A job contains these basic info for now including the following:

- Job type
- Scheduled time (the full range)
- (Maybe name and address of user)

User Story #9: Jobs/Vendors displayed on a Map
Actor: Landlord, Vendor, Tenant
Pre-Condition: Users are logged in.
Use-case: As a Landlord user, I can choose to display the location of my job so that
vendors can better judge the feasibility of completing the job. Vendors can then better
decide if they want to switch jobs. As a Vendor user, I can choose to display my work
location so clients can better see if vendors are able to complete their jobs.
Acceptance Criteria:

- Job/Vendor is displayed on a map interface with a basic title.
- The vendor can click on jobs displayed on the map to see more information

about the job.
- The landlord can click on vendors on the map to see the vendor's profile.

User Story #10: Vendor profile page
Actor: Vendor
Pre-condition: Vendor has already created an account
Use-case: As a vendor, I can see my profile page where it displays my full name, email,
phone number and the job(s) I can accept.
Acceptance Criteria:

- If a vendor is logged in, then he/she can go to their profile page where only the
full name, email, phone number and job is displayed.

Appendix
Technologies Employed
Ruby on Rails: A web application development framework that runs Ruby on the

backend and provides an MVC interface

Ruby: Multi-paradigm language

Google Calendar API: Standard API for RESTful interactions as well further support for

scheduling analysis.

ReactsJS: A Javascript framework used for making user interfaces on web applications.

Bootstrap: A CSS framework used to implement effective user interfaces as well as

creating mobile-friendly responsive web applications.

PostgreSQL: Object-relational database management system.

Javascript: Multi-paradigm language

Git: Versioning control to allow a feature branch workflow

