
Pivotal Interface for Kubernetes
Product Requirements Document v2

Position Name Contact

Team Lead Jesmar Castillo jesmar@ucsb.edu

Team Scribe Marco Chavez mchavez00@ucsb.edu

Developer Durva Kapadne durva@ucsb.edu

Developer Jack Liu jackliu@ucsb.edu

Developer Kindy Tan ktan@ucsb.edu

Product Name: kubernetes konekt Team Name: The Goodfellas

1. Background

Kubernetes is a platform that is made to revolutionize the way that container based
applications are released and tested. Inside of a container we can package an
application and all its dependencies to create an isolated environment. This allows
applications to run independently from the host operating system, eliminating errors
experienced from running an application on different machines. This makes container
based applications more portable than others. With the added benefit of containers not
needing a guest operating system, deployment has become much more lightweight.

Kubernetes builds on top of this by automating the deployment, scaling, and
management of containerized applications within a cluster of computers. It handles the
scheduling and deployment of containers. Without Kubernetes, containers have to be
manually scheduled and it's easy to see how this can be time consuming for an
application that depends on many containers with short life cycles. Through a master
server, a cluster and its nodes can be managed, distributing containers among the
nodes. Once deployment specifications are passed to the Kubernetes cluster master
server it is up to the master to make sure the specifications are true at all times.

2. Existing Technologies
Currently there are companies that host clusters that users can manage and upload
containers to, such as AWS and GCP. However, there are no mainstream companies
that offer individuals the opportunity to provide managed Kubernetes Clusters as a
service to other individuals. These interfaces sometimes require the use of a command
line, a tool that can add unnecessary complexity. Users will have to learn the
documentation of pulling containers and uploading them to a cluster.

Scheduling must also be done manually by the user. Through a YAML file they can
specify a Cron Job and submit it to the Kubernetes cluster. This YAML file must also
specify the container. If the user wishes to schedule his container on a remote cluster,
they will also need valid certificates to use the Kubernetes API.

3. Project Overview
The lack of connectivity between users with containers and users with clusters acts as a
barrier for deployment. Currently there is not an interface that streamlines connecting
these two groups. To solve this issue our Minimum Viable Product (MVP) will be a Web
UI that will connect users all over the world and allow them to run containers on remote
clusters. Our MVP will provide users a dashboard to upload and manage containers.
Users will be able to view the status of their uploaded containers. Providers will have a
dashboard to view and manage their clusters.

We are removing much of the overhead associated with scheduling containers. The
web service will automate tasks and eliminate the need to execute commands on a
terminal to run a container.

4. Project Specifics
The frontend of the Web UI consists of JSP, CSS, and Java elements. The backend
makes use of the Spring Boot and Spring MVC frameworks. Spring Boot provides the
initial configuration for Spring Applications and dependencies. Spring MVC provides
many of the tools for front and backend interactions by taking a model, modifying or
attaching data from the database, and sending it to the view to display it to the user.
Models are also used to read information from forms filled out by users in a secure
manner.

The Hibernate framework is used as an object-relational mapper tool for Java, but
provides other APIs as well. The Hibernate APIs we are using include Hibernate ORM
which allows us to map class objects to table entries on a database and Hibernate
Validator to validate that the user input has correct structure using annotation driven
development. Hibernate Validator also passes error messages back to JSP when
invalid information is detected.

The security of the website will make use of Spring Security. This framework
streamlines user authentication and access control. This allows for easy management
of user logins and registrations. Spring Security keeps track of current user logged in
and roles associated to the user.

The Web UI will be hosted on Pivotal Cloud Foundry. MySQL database will be hosted
on Pivotal Web Service (PWS) and accessed with Hibernate ORM. Google Cloud
Platform (GCP) will be used to help with launching and testing Kubernetes for our
personal use.

Scheduling of the containers will be automated through a generated YAML file. When
the user selects their container they will also select the scheduling time and desired
cluster. These arguments will be used to help generate the YAML file. This file is then
executed within the cluster to schedule the container. The Kubernetes API is used to
access the provider’s clusters. We can easily send a commands over to the designated
cluster and be able to access it.

5. Assumptions
We are assuming that users have containers that are fully functional and smoothly
running. Users will be responsible for managing all their own containers and making
sure their containers run smoothly so that providers are able to run them on their
clusters. Containers uploaded to the website should be hosted on DockerHub and the
user should provide a link to the image. This ensures containers are properly formatted
to run on a Kubernetes cluster.

We are also assuming that most users understand how to use Kubernetes or have a
basic understanding thereof. Providers have already set up their clusters before being
listed to other users and are ready to accept containers. The provider must supply
certificates associated with the Kubernetes clusters they upload so that the web service
can use the Kubernetes API against their cluster.

6. System Architecture Overview

High Level Diagram

User Interaction and Design

Users of the service must register for a user account, provider account, or both. Users
must choose a unique username and provide an email that has not been registered
before. The website will validate their form and if the information provided is valid they
continue to a confirmation page. The user will then be able to login and access the
user/provider dashboard depending on what they registered for.

Providers are users that already have a Kubernetes cluster running. To list their cluster
onto our service, they shall fill out a form with the cluster information needed to access
and get authority to their cluster, they then will submit the form for a review. Once the

cluster has been reviewed and approved the cluster will be visible on their dashboard.
When a user requests to run a container on their cluster the provider will be able to
accept/decline the request. Providers also have ability to hide clusters so that they’re
not listed publicly, if that is desirable for them.

A user is anyone who has containers uploaded on DockerHub and would like to rent a
Kubernetes cluster provided by a provider. In order for a user to upload their container
they must provide a link to their container on DockerHub. The website will confirm the
link is valid by accessing the link, then the approved container will appear on the user
dashboard. A user can upload a container to a cluster by choosing a container, cluster,
deployment preferences, and/or scheduling preferences. The provider of the
Kubernetes cluster will then accept/reject requests. Assuming the provider accepts to
run the container, the website will use Kubernetes API to deploy the container onto the
cluster. When users no longer want their container running on a cluster they may
request to stop the cluster and remove their container from the cluster. A user may also
request to delete a previously uploaded container. The website will then remove all
information related to the container from the website and dashboard, and display an
updated table of uploaded containers.

7. User Stories

USER STORY ACCEPTANCE CRITERIA
As a user/provider, I can register to the
website.

Pivotal Tracker Link:

https://www.pivotaltracker.com/story/sh
ow/161301075

Scenario 1: User/provider has not registered.
Given user/provider has never registered
before.
And user/provider is not currently logged in.
When user/provider fills out registration form.
And user/provider clicks submit.
And account has been created.
Then user/provider will be prompted to confirm
account via email.

Scenario 2: User/provider is registered.
Given the user/provider has an account.
And the user/provider is not currently logged in.
When user/provider fills out registration form.
And user/provider clicks submit
Then error message will appear that account
already exist.

https://www.pivotaltracker.com/story/show/161301075
https://www.pivotaltracker.com/story/show/161301075

As a user/provider, I can login to the
website.

Pivotal Tracker Link:

https://www.pivotaltracker.com/story/sh
ow/161301077

Scenario 1: User/provider is registered.
Given the user/provider is not logged in
And enters a valid username and password
When the user/provider clicks submit
Then user/provider is redirected to home page.

Scenario 2: Invalid username or password.
Given the user/provider is not logged in
And enters an invalid username or password
When the user/provider clicks submit
Then an invalid message will appear
And will be asked to re-enter their information.

Scenario 3: User/provider forgets username.
Given the user/provider is not logged in
And they are registered
When they click username recovery
Then they will receive an email with their
username
And will be redirected to the login page.

Scenario 4: User/provider forgets password.
Given the user/provider is not logged in
And they are registered
When they click password recovery
Then they will receive an email to change their
password
And will be redirected to the password change
page.

As a provider, I can upload a cluster IP
to my account so that it is listed
publicly.

 Pivotal Tracker Link:

https://www.pivotaltracker.com/story/sh
ow/161300973

Scenario 1: Provider has not listed his/her
cluster already.
Given the provider is logged in.
And they have their cluster IP address
When the provider inputs their IP address
Then the IP address is posted
And a confirmation message pops up.

Scenario 2: Provider attempts to upload a
duplicate of cluster
Given provider has previous uploaded cluster
provider is attempting to upload.
When provider inputs their IP address
Then the posting is ignored
And a rejection message pops up.

As a provider, I can view clusters I have Provider wants to see clusters that he/she has

https://www.pivotaltracker.com/story/show/161301077
https://www.pivotaltracker.com/story/show/161301077
https://www.pivotaltracker.com/story/show/161300973
https://www.pivotaltracker.com/story/show/161300973

previously uploaded.

Pivotal Tracker Link:

https://www.pivotaltracker.com/story/sh
ow/161300999

previously uploaded.
Given provider is logged in and has cluster
uploaded.
Then provider can see all clusters the he/she
has previously uploaded.

As a provider, I can delete previously
uploaded cluster

Pivotal Tracker Link:

https://www.pivotaltracker.com/story/sh
ow/162331277

Provider wants to delete previously upload
cluster.
Given provider is logged in and has uploaded
clusters.
Then provider has the option to delete cluster
from website.
And see a success/failure message upon
completion.

As a provider, I can hide cluster so that
they are not publicly listed as available
without deleting the cluster.

Pivotal Tracker Link:

Provider wants to hide cluster from public
without deleting it.
Given provider is logged in and has clusters
uploaded.
Then provider can choose to make clusters
private so that they are only visible on their
dashboard.
And cluster is not listed to users.

As a provider, I can see current status of
uploaded clusters.

Pivotal Tracker Link:

https://www.pivotaltracker.com/story/sh
ow/161734649

Provider wants to see what containers are
uploaded on their clusters.
Given provider is logged in and has clusters
uploaded.
Then provider can see the name of the
containers uploaded and status
(running,stopped,container not assigned).

As a provider, I can accept request to
run a container on my cluster.

Pivotal Tracker Link:

Provider is receives container to run.
Given provider is logged in and a user has
requested to run container on cluster.
Then provider has the option to accept/decline
to run a container on his/her cluster.

As a user, I can upload a container.

Pivotal Tracker Link:

https://www.pivotaltracker.com/story/sh
ow/161301100

User has not uploaded container before.
Given user is logged in and on his/her
dashboard.
Then user has option to upload container.
When they upload the container
Then their dashboard will update
And a confirmation message pops up.

https://www.pivotaltracker.com/story/show/161300999
https://www.pivotaltracker.com/story/show/161300999
https://www.pivotaltracker.com/story/show/162331277
https://www.pivotaltracker.com/story/show/162331277
https://www.pivotaltracker.com/story/show/161734649
https://www.pivotaltracker.com/story/show/161734649
https://www.pivotaltracker.com/story/show/161301100
https://www.pivotaltracker.com/story/show/161301100

As a user, I can schedule a container to
run on a cluster at a different time.

Pivotal Tracker Link:

User has their container already uploaded
Given that they found which cluster to use
And when they want the cluster to run the
container
When they schedule the cluster in their
dashboard
Then the request is sent to the provider
And a confirmation/rejection message appears
after the provider confirms/denies the request.

As a user, I can run a Cron Job.

Pivotal Tracker Link:

User has a Cron Job and an image to run.
Given that user has already uploaded their
container as an image.
And uploaded their Cron Job file
Then provider will run uploaded Cron Job and
uploaded image on cluster

As a user, I can set scheduling
preferences for container that do not
have a Cron Job included in the image
already.

Pivotal Tracker Link:

User wants to upload container to cluster with
no Cron Job.
Given user is logged in and has containers
uploaded with no Cron Job.
Then user can fill out form with scheduling
preferences.
And website will create Cron Job and recreate
image to include Cron Job.

As a user, I can delete an container.

Pivotal Tracker Link:

https://www.pivotaltracker.com/story/sh
ow/161301153

User does not need image anymore
Given that user has already uploaded an image
And user no longer needs the image
Then user is be able to delete image by clicking
on a ‘delete container button
And user will be prompted with a message to
confirm deletion, where the user can then
confirm or cancel to stop deletion

As a user, I can view my payment
information on my dashboard after I
have ran my container on a cluster.

Pivotal Tracker Link:

User has deployed container on a cluster
Given that they have navigated to their account
settings
And they selected the payment information
option
Then the user will gain access to their payment
information
And will be given an option to update their
payment information

As a user, I can communicate (chat) with Scenario 1: chat between two users

https://www.pivotaltracker.com/story/show/161301153
https://www.pivotaltracker.com/story/show/161301153

the cluster owner.

Pivotal Tracker Link:

Given that user wants to start a chat with
another user
And both users have a Kubernetes Konekt
account
Then user can start a chat by clicking on the
‘start chat’ button
And user will be connected and they will be
able to chat

Scenario 2: group chat
Given that user wants to start a chat with other
users.
And all users have Kubernetes Konekt
accounts
Then a users can start a chat by clicking on the
‘start chat’ button and add other users.

As a user, I can see available clusters
that are listed publicly.

Pivotal Tracker Link:

https://www.pivotaltracker.com/story/sh
ow/161301093

User wants to browse available clusters.
Given that they have navigated to their
dashboard
And selected the available clusters option
Then the user will be displayed a list of
available clusters
And will be given a description with information
about each cluster.

As a user, I can manage my user
settings on a dashboard.

Pivotal Tracker Link:

User wants to change settings (email,
password, payment information).
Given that the user is logged into their account.
And has selected the account settings.
Then the user will be shown a list of settings
that they can change.
And they will be sent a confirmation email.

As a user, I can see current status of
uploaded containers

Pivotal Tracker Link:

https://www.pivotaltracker.com/story/sh
ow/162229331

User wants to see which containers are running
on a cluster.
Given user is logged in.
Then user can see table displaying all container
that are currently uploaded and their status
(running, stopped, not assigned to cluster).

As a user, I can remove container from
cluster.

Pivotal Tracker Link:

User wants to remove container from cluster.
Given the user is logged in and has container
currently running on a cluster.
Then user can choose to stop running container

https://www.pivotaltracker.com/story/show/161301093
https://www.pivotaltracker.com/story/show/161301093
https://www.pivotaltracker.com/story/show/162229331
https://www.pivotaltracker.com/story/show/162229331

 on cluster and remove container from cluster.

As a user, I can report a faulty cluster.

Pivotal Tracker Link:

User wants to report problems with cluster.
Given user is currently running container on a
cluster.
And the cluster is not functioning properly,
namely cluster is inaccessible.
Then user can report faulty cluster to admin
and cluster owner.

8. Dashboards

Provider Dashboard

User Dashboard

9. System Models

Controllers

Database Services

Entities

10. Database Model

11. Sequence Diagrams

Registration and Login

Upload Cluster

Upload Container

12. Appendices

What we’re NOT Doing
We are not going to make this into a mobile app. Connecting users through Kubernetes
would be possible through a mobile, but we want to focus on developing a web
application first. We are also not creating an interface to create a Kubernetes cluster. As
previously mentioned, providers will be responsible for making their own clusters, and
then using our web app to connect to other users.

List of Technologies
● Web Stack

○ Java: Main language used in creating spring based application(s).
○ Spring Boot: Configuration for Spring applications.
○ Spring Core: IoC and Dependency Injection features.
○ Spring MVC: Model-View-Controller (MVC) architecture and components

that can be used to develop flexible and loosely coupled web applications.
○ Spring Security: Authentication, authorization and other security features

for enterprise applications.
○ Hibernate ORM / Validator: Object-relational mapper tool and validates

user input.
○ MySQL: Relational database management system.

● Cluster Stack
○ Minikube: Local cluster service.
○ Pivotal Container Service (PKS): Deploy and run containerized

workloads across private and public clouds.
○ Google Cloud Platform (GCP/GKE): Series of cloud services including

cluster management for running your Docker containers.

