

Assist MD - Product Requirements Document

Team name: High Voltage Society
Team lead: Brian Humphreys
Team Scribe: David Roster
Andrew Laux
Ram Malyala
Siddharth Malik

Table of Contents:

Assist - MD: Introduction 4
GOALS: 6

System Architecture Overview 7

User interaction and design 8

Project Milestones and Objectives Outlined 9
High-Level User Stories and Acceptance Criteria: 9

iOS App for Data Streaming - 9
S3 Triggered Lambda Function facilitating EC2 - 9
Lambda SSH and Darknet Execution - 10
Lambda AWS SDK Prediction Upload to S3 - 10
Web App Request for S3 Resources - 10
Locally Train a YoloV2 Model - 11
Historical Surgeries Tab - 11
Live Surgeries Tab - 11
Lambda Function to Extrapolate Useful Data - 11
Downloadability of Compiled Data - 12
Local Server to Access S3 Resources - 12
Local Server to Perform Darknet Inferences - 12
Local Server Inference Upload - 13

Lower-Level Use Cases - User Stories Broken Down: 13
Build Simple iOS Platform that allows for video and image capture 13
Send Visual Data from HVStream to Amazon S3 14
Create Lambda Function Triggered by S3 Object Creation 14
Lambda Function to Prepare URL data for EC2 Commands 14
Integrate Simple-SSH in to Lambda and Create SSH Object 15

AWS EC2 instance properly calls darknet and generates a prediction after being
called from AWS Lambda 15
If videos are available in S3 buckets, add to a surgery card to Historical View 15
Make videos expandable upon clicking 16
Live upload to our Web Application using HVStream 16
Lambda function using Panda to compile Time Series 16
Be able to to make video inferences using a Yolov2 model on EC2 17
Calls to darknet on EC2 should utilize GPU acceleration for improved performance17
Be able to train a darknet CNN model. 17
Be able to make inference calls to a YOLOv2 model trained on preliminary dataset.
18
Be able to run tests in Xcode to test HVStream application. 18
Lambda AWS SDK Prediction Upload to S3 . 19
Lambda SSH and Darknet Image/Video Execution . 19
Lambda Function triggered by Web App to download PowerPoint of Surgery Stats 19
Send live video data from HVStream to Amazon S3 19
Continuously query S3 to get newly uploaded files 20
Execute darknet on image file and generate prediction file on local server 20
Execute darknet on video file and generate prediction file on local server 20
Upload prediction file on local server to aws S3 bucket 21

UML Diagrams 22
React Web App UML 22
Stand-in Server UML 23
iOS UML Diagram 24
AWS Server Interactions with iOS App and Web App: Overall System UML 25

Sequencing Diagrams 26
Image Inference Sequencing 26
Live Video Inference Sequencing 27
Boto Server Sequencing 28

Assist-MD Technical Implementation - Prototyping 29
Github: 29
iOS interfacing with HVStream: 29
Amazon Web Services (AWS) Backend: 30
Image Recognition Component - YOLOv2 Network Structure: 31
Front End Assist-MD Web App - ReactJS: 32

Appendices 33
What Assist-MD Does Not Do 33

Technologically: 33

Surgically: 33
Technologies Employed 33

Assist MD - Product Requirements Document

Assist - MD: Introduction

“The practice of Medicine, and in particular Surgery, is a continually evolving
science. We speak of surgery as “being performed,” as though it were a symphony.
Technologies and techniques continue to emerge that improve outcomes, health
results, and patient experiences.
I discern several critical values in the use of Assist MD algorithms.”
- Dr. Brian Humphreys Sr.

Arthrex is a company which provides services, products, and technical innovation for medical
professionals. Their enterprise research team has asked our group to implement a machine
learning framework that is capable of processing and classifying video from their 4k surgical
camera as well as any other cameras present in the operating environment. Specifically, they
would like software that can, among other things, recognize and track medical personnel,
recognize and track surgical tools.

Towards this end, we will gather test data which will be images of tools and medical personnel
that we can use to train a computer neural network. The goal is to develop software that will be
able to make real-time inference calls on images from operating room video and relay that
information to medical personnel. Accurate processing of this data will allow us to solve a range
of problems facing medical personal which he hope to explore. It will also allow us to generate
post-surgery reports that will streamline important data collection and booking keeping in the
operating environment that will allow personnel to focus on important tasks at hand.

There are many perspectives from which a product such as Assist-MD can be found vital, many
of which mentioned in a written review by Dr. Humphreys. Dr. Humphreys believes Assist-MD
can be found critical in the medical community in the following ways: teaching surgery, reducing
surgical times, tracking key elements of surgery, use in critical surgery, evaluating new surgical
techniques, interfacing with robotic surgeries, malpractice legal defense.

Medical Malpractice is a huge issue in the medical community which is the leading cause of
death behind heart disease and cancer. To prove malpractice occurred during a surgery, an
accuser must prove that a doctor provided inadequate care and an injury occurred with
damaging consequences. With the implementation of Assist MD, both malpractice and defense
attorneys can use footage to better support their claims. The footage will provide a basis for
both party’s claims because a doctor’s past surgical history can be presented as evidence.

As medical class’s size get more substantial, students are unable to get as much one on one
time with the professor. Teachers are unable to give enough attention and time to students so

this lack of intimate learning pushes students to study techniques and procedures on their own.
In an article titled “Teaching Surgery to Medical Students” by W Brian Sweeney, he states the
disadvantage medical students currently have in today’s medical schools: “It is very clear that
given the tremendous increase in medical knowledge, surgical technology, and intricate
operative procedures, teaching surgery to medical students during this relatively short exposure
has become an immense challenge.” Our increasing knowledge of the medical field has made it
harder for students to keep up, but that is where Assist MD can make up the difference. Assist
MD will provide more quantifiable metrics that students and professionals can judge their skills
off and understand where they need to improve in. By providing increased analytics, Assist MD
can help up and coming professionals build better technique and procedures for when they
operate on a person in their future careers. By improving technical approach, Assist MD will also
improve surgical times for students and medical practitioners. This extra time for students will
allow teachers to spend other precious allotments reviewing concepts. Current doctors who see
improved surgical times due to Assist MD can focus their time on other important matters of
theirs.

The innovative features of Assist MD will see transformations in how we view surgery by
developing new surgical techniques, advancements when performing crucial surgeries, and
interfacing with robotics in the operating room. Currently, medical technology is advancing at a
fast rate but proper documentation of new surgical techniques is releasing at a much slower
rate. Assist MD’s live feed of a surgery where proper documentation is done at real time will
provide enough evidence to release newer techniques to the industry than previously before.
These new techniques can then be passed around to medical offices and be in practice quicker
for critical surgeries where they could have a tremendous effect. Another positive of improving
surgical times and tagging keys elements of a medical procedure is robotics surgeries already
implement surgical cameras when conducting surgerys. By adding Assist MD to robotic
surgeries, they will have lower risk of human error and produce a much safer outcome for the
patient.

Assumptions that will be made are that the hospital has cameras in the surgery room as well as
an account for our product. Doctors/medical staff must turn on each of the cameras and the
cameras must be functional and positioned correctly to capture each feed. The timing of the
cameras should synced. Another assumption is that surgical tools not on the table at the end of
the surgery were used for the surgery. If tools are removed for any other reason (dropped by
accident, misplaced, moved by a nurse etc.) then there will be an error as our service will
assume those tools were used for the surgery.

Assist-MD will utilize video feeds that route to AWS S3 buckets and operate algorithms on said
buckets in order to provide a live display of identified surgery equipment. This will be done by
routing our S3 buckets to Sagemaker and running our algorithms on the data sent. We will have
AI Models that are trained to recognize the instruments, and tag them as such. The output of the
application will then be displayed on a web application with a slight delay to account for data
transfer and processing times. At the end of a usage run, the program will generate an outline of
the operation, showing tools, procedures, and holding the video for later use. Our algorithms
can then be expanded to include personnel if time permits us, and potentially even identify
people.

GOALS:

High Voltage Society is looking to create a product which will accurately identify medical
instruments from a video feed, with the task being done as close to real time as possible. One of
our main objectives is to first be able to upload the visual data to AWS servers. Once this is
done, we can easily train Darknet algorithms to tune the weight file for our purposes. Once the
weights are sufficiently tuned, we can upload this to a darknet repository cloned on AWS
servers and execute object inferences using this constructed apparatus.

Our ultimate objective is to reach the state in which the Machine Learning models can
differentiate between tools with a high accuracy. At this point, we will have a strong proof of
concept and can begin streamlining and perhaps adding more features. One such feature
would be to add the ability to download data extrapolated from a time series about the surgery
in PowerPoint format with added pictures including bounding boxes of statistically interesting
points in the procedure and their corresponding information. This information generator will be
accessible at the front end of Assist-MD service on each surgery card where the surgery video
contents are also displayed. This will help surgeons review details about the surgery they
performed and help prevent any complications with information that may arise.

However, we wish to go above and beyond the requirements, and as such we have elected to
add additional objectives to our project. One of these objectives is the aforementioned Surgery
room personnel identification once the pipeline structure has been constructed and reinforced
with machine learning model training. This data will be compiled on the same time series to
which the instrument inference are mapped. Interesting data such as moments where the most
and least medical staff are in the room will be included in the generated data file from the front
end. We wish to start by simply identifying the surgeon and staff in the operating room. Then
perhaps look into being able to identify certain people using pre developed frameworks and
libraries. However, this option is dependent on ethical considerations. Completion of AI
identification and statistical data points download objectives would result in the project itself
being technically completed.

System Architecture Overview

The following UML design depicts where the flow of data starts and ends. Data is collected in
real time from surgical cameras oriented to view capture visual data of medical instruments on a
table. In order to simply the prototype, we have fashioned an iOS app to capture and send the
data to AWS instead of using industrial cameras that require connection to a network. The iOS
interface will simply stream live video to AWS where the data will get parsed into frames and
feed into our YOLOv2 network. Once the network makes an inference on the individual pieces
of data incoming from the stream, it will then connect the inferred data to a Live Video tab on the
Web Interface which will provide the front end with a live visualization of instrument inferences
in the form of bounding boxes being made on each frame of the surgical video data. In another
tab that denotes ‘Historical Inferences,’ any and all videos of entire surgeries with visual
inferences will be available to view and to generate PowerPoint files on their respective
statistical extrapolations.

Diagram Legend:

Instrument Coverage: iPhone will be fixed on
the treys where the surgeons place the
instruments which are not in use. The
process of elimination will be used to figure
out what instrument the doctor is using

AWS S3: S3 buckets will be used twice here;
once to stream unprocessed frames into and
twice to place processed images in which the
front end will query.

AWS Lambda: One lambda function will be
triggered by the creation of an object in the
unprocessed prefix of the S3 bucket.

Whenever triggered, the function will create a Simple SSH object instance that will be used to
facilitate command execution in a remote server.

AWS EC2: The remote server we are using is an EC2 instance that is configured with CUDA to
run programs using GPU resources. YOLOv2 inferences are ran on this computing instance .

UI for Data Metrics: Once inferences have been made, the visual data and extrapolated will
then be compiled into a time series and sent to the web interface to medical personnel usage.

PowerPoint Compilation: This is where the user will have the option to compile the main data
points (i.e. maximum and minimum number of medical personnel involved at any given time, the
instrument used most frequently, the instrument used least frequently) into a PowerPoint for
post-surgical evaluation and teaching.

User interaction and design

The starting point of user interaction in this project is the start of the video feed capture. Once
the iPhone cameras are all turned on, they will immediately initiate video feed streaming into
AWS to be processed. All the clocks of the cameras are synced and data is sent with time
stamps for the videos to be synced on a time series automatically. Assuming the user is a
doctor working at a hospital that has an active AWS account the user may have to:

1. Create an iOS account that securely retains AWS credentials
2. Choose which account to stream video to
3. Give the stream a relatable title
4. Orient the camera towards the appropriate scene

Upon logging in, the user is prompted with a minimalist, monotonic screen to enter their
credentials. When granted access, the user dashboard will appear. The initially opened tab will
display aggregated company metrics which include(#3 & #4 features are assuming that we
reach the point in the project when it is possible to make these inferences):

1. Aggregated number of company surgery streams that have been processed and stored
in their library

2. Aggregated number of total instruments used overall video streams with a break down of
how many of each kind of instrument

3. Average number of medical personnel in each surgery
4. Average number of people who exit and enter the Operating Room in each surgery

The user will also be presented with a tab that will route them to a page where they can search
video streams by some affiliated attributes. The full video feed (initially ordered chronologically
according to upload) will appear as a column of bars that display the video metrics. Once
clicked on, the bar expands into half a page and displays the video stream in a time-navigable
format. Each video displays the bounding boxes around the spaces where instruments were
detected.

A search bar is available on the column view of the video search page to make queries of
videos based on the following attributes of each video stream:

1. The video title
2. Names of Instruments captured in the video
3. Number of Instruments captured in the video or number of personnel involved and

captured in the video (will be applicable if project becomes mature enough).

In the expanded video view that appears when a video bar is clicked, the user is also presented
with the option to download a compiled version of the triple video stream capture which will be
viewable in a PowerPoint. This will be viewed as a minimalist button in the bottom right of the
full card view.

Project Milestones and Objectives Outlined

High-Level User Stories and Acceptance Criteria:

Every User story will display a live github link. If the User story has been completed, it will refer
to the last Github link that pertains to the corresponding story. If the User Story is not yet
completed it will link to the latest Github commit. If the story has not been started, it will contain
no link in the given field. Github links in User Story section may overlap with the links in the Use
Case section as the latest work done on the User Story could indeed be the completion of that
Use Case. If there was no code and only AWS configuration involved, the field will denote this
with ‘AWS Configured.’

1. iOS App for Data Streaming -
As a surgeon, I can capture video feed on the instrument coverage camera to be sent to
AWS so that it will be available to be trained by the instrument inference algorithms.

Acceptance: Data becomes available in a specified S3 bucket in an unprocessed prefix.

Github Link:
https://github.com/brianhumphreys/Assist-MD/commit/34ac2951183864aaec2a5550489
6902744969ec7

Trello Card: https://trello.com/c/zee2sG4C

2. S3 Triggered Lambda Function facilitating EC2 -
As the back end triggering service, whenever the S3 Bucket creates an object file that is
in .mov or .jpg format, a Lambda Function will be Triggered in order to facilitate darknet
execution.

Acceptance: Cloud Watch begins to log data of the Lambda execution.

Github Link: AWS Configured

Trello Card: https://trello.com/c/HIf1ZBxM

https://github.com/brianhumphreys/Assist-MD/commit/34ac2951183864aaec2a55504896902744969ec7
https://github.com/brianhumphreys/Assist-MD/commit/34ac2951183864aaec2a55504896902744969ec7
https://trello.com/c/zee2sG4C
https://trello.com/c/HIf1ZBxM

3. Lambda SSH and Darknet Execution -
As a Lambda Function, if I am triggered, I will ssh into a (running) EC2 instance and
perform an inference using darknet algorithms on the image that cause the activation.

Acceptance: An output image or video (depending on input) named predictions.png/mp4
is generated in the darknet root directory.

Github Link:
https://github.com/brianhumphreys/Assist-MD/commit/185fd0149517160f43faf24bf226bf
9b54daf14a

Trello Card: https://trello.com/c/X2fHhp5C

4. Lambda AWS SDK Prediction Upload to S3 -
As a Lambda Function, once darknet has executed, I need to upload the generated
image/video to the specified S3 bucket so the front end web app can have access to it

Acceptance: An inferred image/video appears in the S3 bucket of prefix ‘processed.’

Github Link:
https://github.com/brianhumphreys/Assist-MD/commit/299ccb86891b0dd128633058008
29f9f81bcfa10

Trello Card: https://trello.com/c/0CEzP5cr

5. Web App Request for S3 Resources -
As the front end React Web App with AWS credentials available, I can query the
appropriate public S3 bucket for available objects in order to build image/ video URLs to
display inferences.

Acceptance: Images/Videos appear on the web app and the page does not remain
blank.

Github Link:
https://github.com/brianhumphreys/Assist-MD/commit/ce78ce0806a2b78df0d4ae210325
2ba7db5829de

Trello Card: https://trello.com/c/EwGsGfpX

https://github.com/brianhumphreys/Assist-MD/commit/185fd0149517160f43faf24bf226bf9b54daf14a
https://github.com/brianhumphreys/Assist-MD/commit/185fd0149517160f43faf24bf226bf9b54daf14a
https://trello.com/c/X2fHhp5C
https://github.com/brianhumphreys/Assist-MD/commit/299ccb86891b0dd12863305800829f9f81bcfa10
https://github.com/brianhumphreys/Assist-MD/commit/299ccb86891b0dd12863305800829f9f81bcfa10
https://trello.com/c/0CEzP5cr
https://github.com/brianhumphreys/Assist-MD/commit/ce78ce0806a2b78df0d4ae2103252ba7db5829de
https://github.com/brianhumphreys/Assist-MD/commit/ce78ce0806a2b78df0d4ae2103252ba7db5829de
https://trello.com/c/EwGsGfpX

6. Locally Train a YoloV2 Model -
Tag user generated images of tools. Format annotations so that the data can be used to
train a CNN that uses darknet. The model can then be used in our system to recognize
tools in images video.

Acceptance: Obtain a useable model that makes correct inferences.

Github Link:
https://github.com/brianhumphreys/Assist-MD/tree/feature/andrew/LocalDarknetLinux/ext
ra

Trello card: https://trello.com/c/WT4eFtK1

7. Historical Surgeries Tab -
As a Doctor/user, I can view image/video inferences of surgeries that have already
occured in the Historical tab of the web app in order to review interesting statistical
information

Acceptance: The full card view displays important statistical information about the
surgery and reasonably correct.

Github Link:
https://github.com/brianhumphreys/Assist-MD/commit/5173b3bfbd66be8de373ebbcdf00
51d1034452e8

Trello Card: https://trello.com/c/gKwqPiqx/68-historical-surgeries-tab

8. Live Surgeries Tab -
As a Doctor/user, I can view image/video inferences of live surgeries in the Live tab of
the web app in order to review real time object inferences frame by frame.

Acceptance: A file is generated on your local machine in PowerPoint format and is
populated with information such as most and least used instruments and time series
charts.

Github Link: Ready for Development

Trello Card: https://trello.com/c/WsKHZcMD/69-live-surgeries-tab

9. Lambda Function to Extrapolate Useful Data -
As a Lambda function, whenever an .mov object is created in a specified S3 bucket of
prefix ‘processed,’ I will use the processed generated data to extrapolate interesting

https://github.com/brianhumphreys/Assist-MD/tree/feature/andrew/LocalDarknetLinux/extra
https://github.com/brianhumphreys/Assist-MD/tree/feature/andrew/LocalDarknetLinux/extra
https://trello.com/c/WT4eFtK1
https://github.com/brianhumphreys/Assist-MD/commit/5173b3bfbd66be8de373ebbcdf0051d1034452e8
https://github.com/brianhumphreys/Assist-MD/commit/5173b3bfbd66be8de373ebbcdf0051d1034452e8
https://trello.com/c/gKwqPiqx/68-historical-surgeries-tab
https://trello.com/c/WsKHZcMD/69-live-surgeries-tab

information just as the most used instrument and the least used instrument and place the
new data into the bucket.

Acceptance: A text file has been generated and place in the bucket of the proper prefix
with data summarizing the surgery compilation.

Github Link: Ready for Development

Trello Card: https://trello.com/c/sdyFwHpk/75-lambda-function-to-extrapolate-useful-data

10.Downloadability of Compiled Data -
As a Doctor/user, I can choose to download compiled data of existing surgeries in order
to review the significant portions of the surgery offline

Acceptance: A file is generated on your local machine in PowerPoint format and is
populated with information such as most and least used instruments and time series
charts.

Github Link: Ready for Development

Trello Card: https://trello.com/c/JWvNbjLJ/70-downloadability-of-compiled-data

11.Local Server to Access S3 Resources -
As the stand-in server, whenever a new .jpg or .mov file is uploaded to the s3 bucket, it
will be downloaded to the local machine so that darknet image classification can be
performed on the file in case the AWS EC2 instance fails.

Acceptance: Whenever a file is uploaded to the s3 bucket, it is downloaded to the local
server.

Github Link:

https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991
b412f

Trello Card: https://trello.com/c/obXNmOQB/71-local-server-to-access-s3-resources

12.Local Server to Perform Darknet Inferences -
As the stand-in server, whenever a new .jpg or .mov file is downloaded from the s3
bucket to the local machine, darknet inference will be executed so that the file can be
classified in case the ec2 instance fails.

https://trello.com/c/sdyFwHpk/75-lambda-function-to-extrapolate-useful-data
https://trello.com/c/JWvNbjLJ/70-downloadability-of-compiled-data
https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991b412f
https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991b412f
https://trello.com/c/obXNmOQB/71-local-server-to-access-s3-resources

Acceptance: Whenever a file is downloaded from the s3 bucket to the local machine,
darknet inference is executed, resulting in an output file with the correct classification of
the original file.

Github Link:

https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991
b412f

Trello Card:
https://trello.com/c/pCijPkNj/72-local-server-to-perform-darknet-inferences-on-video-ima
ges

13.Local Server Inference Upload -
As the stand-in server, whenever a .jpg or .mov file has been classified on the local
machine, the resulting output file will be uploaded to the s3 bucket so that it can be
accessed by the web app.

Acceptance: Whenever an output file is generated by the darknet execution, it is
uploaded and appears in the correct s3 bucket.

Github Link:

https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991
b412f

Trello Card: https://trello.com/c/p4VAZ7tE/73-local-server-inference-upload

Lower-Level Use Cases - User Stories Broken Down:

1. Build Simple iOS Platform that allows for video and image capture
Actors: HVStream App, User
Precondition: User has an iPhone (only applicable in prototype)
Postcondition: Data is captured and stored in phone with a title chosen by user
Flow of Events:

1. User opens app on iPhone
2. User records a video or picture
3. Video/Image is stored on mobile device and user names the file

Alternative Paths: If memory on mobile device is full, user is notified.
Trello: https://trello.com/c/AydpirK6/15-send-video-feed-data-in-bulk-to-aws
GitHub:https://github.com/brianhumphreys/Assist-MD/commit/ee63bde023287bcddbc26
a08e3f61cc9cfa1860b

https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991b412f
https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991b412f
https://trello.com/c/pCijPkNj/72-local-server-to-perform-darknet-inferences-on-video-images
https://trello.com/c/pCijPkNj/72-local-server-to-perform-darknet-inferences-on-video-images
https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991b412f
https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991b412f
https://trello.com/c/p4VAZ7tE/73-local-server-inference-upload
https://trello.com/c/AydpirK6/15-send-video-feed-data-in-bulk-to-aws
https://github.com/brianhumphreys/Assist-MD/commit/ee63bde023287bcddbc26a08e3f61cc9cfa1860b
https://github.com/brianhumphreys/Assist-MD/commit/ee63bde023287bcddbc26a08e3f61cc9cfa1860b

2. Send Visual Data from HVStream to Amazon S3
Actors: HVStream App, User, AWS S3 servers
Precondition: User has opened the app
Postcondition: Data is uploaded to S3 server and is available for manipulation
Flow of Events:

4. User selects their server. Application updates all variables
5. User selects video or picture
6. Application sends data to the selected server with HVStream library

Alternative Paths: Specific server is offline. Data will fail to send.
Trello: https://trello.com/c/gZIr8XMz/76-send-visual-data-from-hvstream-to-amazon-s3
GitHub:https://github.com/brianhumphreys/Assist-MD/commit/34ac2951183864aaec2a5
5504896902744969ec7

3. Create Lambda Function Triggered by S3 Object Creation
Actors: AWS S3 Servers, AWS Lambda
Precondition: User has successfully sent a video/image file to the S3 prefix, unprocessed
Postcondition: Cloud Watch begins logging Lambda function execution
Flow of Events:

1. File is uploaded to S3 bucket with prefix ‘unprocessed.’
2. AWS servers create an Event, ‘objectCreated’
3. This event spins up a lambda function to be executed

Alternative Paths: If Lambda is not triggered, User is notified through Cloud Watch
Trello:
https://trello.com/c/5YvGQCZj/30-configure-api-gateway-to-handle-root-get-requests-and
-to-return-either-the-video-or-a-link-to-the-video
Github:
https://github.com/brianhumphreys/Assist-MD/commit/ce78ce0806a2b78df0d4ae210325
2ba7db5829de

4. Lambda Function to Prepare URL data for EC2 Commands
Actors: AWS Lambda
Precondition: Function has been triggered and file resources have been passed in
Postcondition: URL is successfully constructed and Cloud watch reflects this
Flow of Events:

1. Function builds URL for the file created in the S3 bucket
2. URL of created object is constructed from imported data

Alternative Paths: If EC2 is not running or if darknet fails to make inference, Cloud Watch
will notify user
Trello:
https://trello.com/c/77BVjIFg/77-lambda-function-to-prepare-url-data-for-ec2-commands
Github:
https://github.com/brianhumphreys/Assist-MD/commit/bf6eb0704e6d91f4584465be5aed
0b4ce518e9cc

https://trello.com/c/gZIr8XMz/76-send-visual-data-from-hvstream-to-amazon-s3
https://github.com/brianhumphreys/Assist-MD/commit/34ac2951183864aaec2a55504896902744969ec7
https://github.com/brianhumphreys/Assist-MD/commit/34ac2951183864aaec2a55504896902744969ec7
https://trello.com/c/5YvGQCZj/30-configure-api-gateway-to-handle-root-get-requests-and-to-return-either-the-video-or-a-link-to-the-video
https://trello.com/c/5YvGQCZj/30-configure-api-gateway-to-handle-root-get-requests-and-to-return-either-the-video-or-a-link-to-the-video
https://github.com/brianhumphreys/Assist-MD/commit/ce78ce0806a2b78df0d4ae2103252ba7db5829de
https://github.com/brianhumphreys/Assist-MD/commit/ce78ce0806a2b78df0d4ae2103252ba7db5829de
https://trello.com/c/77BVjIFg/77-lambda-function-to-prepare-url-data-for-ec2-commands
https://github.com/brianhumphreys/Assist-MD/commit/bf6eb0704e6d91f4584465be5aed0b4ce518e9cc
https://github.com/brianhumphreys/Assist-MD/commit/bf6eb0704e6d91f4584465be5aed0b4ce518e9cc

5. Integrate Simple-SSH in to Lambda and Create SSH Object
Actors: AWS Lambda
Precondition: Function has been triggered and and URL for file is constructed
Postcondition: The Lamdba function gains acces to EC2 instance through SSH
Flow of Events:

1. Simple-ssh is imported and object is created with host name and permissions
2. Execution commands are specified in object execution methods
3. The SSH begins execution and specified tasks are automatically carried out

Alternative Paths: If SSH fails to gain access to the EC2 instance then Cloud Watch
notifies user
Trello: https://trello.com/c/X2fHhp5C
Github:
https://github.com/brianhumphreys/Assist-MD/commit/bf6eb0704e6d91f4584465be5aed
0b4ce518e9cc

6. AWS EC2 instance properly calls darknet and generates a prediction after being
called from AWS Lambda
Actors: AWS Lambda , AWS EC2, AWS S3.
Precondition: AWS lambda code is active and EC2 instance has been created.
Postcondition: predictions file is generated and put in the processed S3 bucket.
Flow of Event:

1. Lambda is triggered and begins to run commands on EC2 instance.
2. EC2 runs darknet and yoloV2 with our weights file on the image.
3. The output is generated from darknet and placed in the processed bucket.

Alternative Paths:
1. Lambda is configured incorrectly, and no output will be generated.
2. Weights file is incorrect, and the output will have no identifications.
3. Submitted file too unclear, yolo will have no way to interpret the file.

Trello: https://trello.com/c/HIf1ZBxM
Github:
https://github.com/brianhumphreys/Assist-MD/commit/dd14fb8533c7f8c3b8ab7e1eb43d
c5a5c775f18f

7. If videos are available in S3 buckets, add to a surgery card to Historical View
Actors: Assist-MD Web App, User, React
Precondition: Request from AWS has been received
Postcondition: Surgery Card components are loaded with video thumbnails
Flow of Event:

1. If the Assist-MD app video state updates, create a surgery card component for
each video that is included in the app state

2. If there are too many surgery cards to fit on the page, app will incorporate scroll
component

Alternative Paths: If there are no videos in the app state, no surgery cards will appear on
the page

https://trello.com/c/X2fHhp5C
https://github.com/brianhumphreys/Assist-MD/commit/bf6eb0704e6d91f4584465be5aed0b4ce518e9cc
https://github.com/brianhumphreys/Assist-MD/commit/bf6eb0704e6d91f4584465be5aed0b4ce518e9cc
https://trello.com/c/HIf1ZBxM
https://github.com/brianhumphreys/Assist-MD/commit/dd14fb8533c7f8c3b8ab7e1eb43dc5a5c775f18f
https://github.com/brianhumphreys/Assist-MD/commit/dd14fb8533c7f8c3b8ab7e1eb43dc5a5c775f18f

Trello:
https://trello.com/c/N26hqSsn/81-if-videos-are-available-in-s3-buckets-add-to-a-surgery-
card-to-historical-view
Github:
https://github.com/brianhumphreys/Assist-MD/commit/5173b3bfbd66be8de373ebbcdf00
51d1034452e8

8. Make videos expandable upon clicking
Actors: Assist-MD Web App, User, React
Precondition: There are live surgery cards existent on the Assist-MD site and user is
logged in
Postcondition: Surgery card expands to full view and video thumbnail extends to a full
video window
Flow of Event:

1. Upon clicking a Surgery card, surgery metrics are accessed and passed into the
Full View component

Alternative Paths: If no metrics or only faulty metrics are available, display nothing
Trello: https://trello.com/c/WEvKdTPQ
Github:https://github.com/brianhumphreys/Assist-MD/commit/f7ea7990536e86b6ab518b
705453df11e30f3e0e

9. Live upload to our Web Application using HVStream
Actors: Assist-MD Web App, User, HVStream
Precondition: HVStream is open and upload button has been clicked
Postcondition: The web app displays a live stream from the HVStream device
Flow of Event:

1. HVStream uploads to S3 and lambda function activates
2. Lambda function runs darknet analysis and posts the output to our web app.

Alternative Paths: No output. Potential lambda function failure or upload failure.
Trello:https://trello.com/c/aBp6yrwy/35-live-upload-to-our-web-application-using-hvstrea
m
Github:https://github.com/brianhumphreys/Assist-MD/commit/ea8d46a2ce1f94c81f4c163
197aa788a8b96b77f

10.Lambda function using Panda to compile Time Series
Actors: AWS Lambda, AWS S3
Precondition: The new object being created in the processed prefix.
Postcondition: The text file gets uploaded to S3 processed prefix.
Flow of Events:
1. A object gets uploaded to processed prefix.
2. Aws Server creates an object created event.
3.That object created event triggers the lambda execution.
4. lambda uses panda to extract minimum and max instruments in time domain.
5. Outputs a text file and puts it in the pre processed.

https://trello.com/c/N26hqSsn/81-if-videos-are-available-in-s3-buckets-add-to-a-surgery-card-to-historical-view
https://trello.com/c/N26hqSsn/81-if-videos-are-available-in-s3-buckets-add-to-a-surgery-card-to-historical-view
https://github.com/brianhumphreys/Assist-MD/commit/5173b3bfbd66be8de373ebbcdf0051d1034452e8
https://github.com/brianhumphreys/Assist-MD/commit/5173b3bfbd66be8de373ebbcdf0051d1034452e8
https://trello.com/c/WEvKdTPQ
https://github.com/brianhumphreys/Assist-MD/commit/f7ea7990536e86b6ab518b705453df11e30f3e0e
https://github.com/brianhumphreys/Assist-MD/commit/f7ea7990536e86b6ab518b705453df11e30f3e0e
https://trello.com/c/aBp6yrwy/35-live-upload-to-our-web-application-using-hvstream
https://trello.com/c/aBp6yrwy/35-live-upload-to-our-web-application-using-hvstream

Alternative Paths:
1. If csv file is not present with a corresponding file, wait 5 seconds and trigger again.
2. if still no file, cloud watch will notify user.
Trello: https://trello.com/c/yIJhIUXO
Github: Ready for Development

11.Be able to to make video inferences using a Yolov2 model on EC2
Actors: AWS EC2, Darknet, YoloV2 model
Preconditions: EC2 must have openCV library installed locally. Darknet must be
compiled on EC2 to utilize openCV. Model must be able to recognize tools correctly.
Postcondition: Program should output a predictions.mov with bounding boxes around
tools in the video.
Flow of Events:

1. Invoke command ./darknet detector demo
2. Specify paths to .cfg .weights .data files.
3. Specify path to .mov file.
4. Darknet generates predictions.mov
5. Inspect .mov for acceptance

Alternate Paths: If openCV is not configured on EC2 darknet will report an error.
If the paths to necessary files are not correct darknet will indicate that they are missing.
If the model was not trained properly the bounding boxes will be drawn incorrect.
Trello: https://trello.com/c/KEoJyqL0
Github: AWS Code

12.Calls to darknet on EC2 should utilize GPU acceleration for improved
performance
Actors: AWS EC2 instance, Darknet
Preconditions: EC2 instance type needs to include access to nvidia GPU cores. Must
have cuda installed on the instance with cduNN library present as well. Darknet
executable must be built with the features enabled.
Postcondition: Darknet was compiled with the correct flags set without error. be able to
make inferences in milliseconds as reported by darknet.
Flow of Events:

1. Set flags in Darknet makefile to allow compilatoin with GPU and OpenCV
2. Remake the program and run the inference

Trello:: https://trello.com/c/fm2g4DeT
Github:

13.Be able to train a darknet CNN model.
Preconditions: Have a valid set of tagged images as data. Have darkent built with GPU
acceleration. Have properly configured .data and .cfg files.
Postconditions: Have an avg-loss value of <0.1. .Weights files exist for each 100
iterations.
Flow of events:

https://trello.com/c/yIJhIUXO
https://trello.com/c/KEoJyqL0
https://trello.com/c/fm2g4DeT

1. Initialize training with specified data set.
2. Darknet makes reports at each iteration.End training before apprx. 4000

iterations or when avg-loss does not decrease.
Alternate Paths: If the data was improperly annotated darknet will fail and report an
error. If darknet was not built with GPU acceleration iteration will take too long and
training to a useable avg-loss will not be feasible. If the data set is of poor quality or
nonsensical avg-loss will show no signs of steady reduction that we expect. If the data
annotations are improperly formatted the training will fail to execute.
Trello:https://trello.com/c/WT4eFtK1/43-be-able-to-train-a-yolov2-darknet-cnn-using-prel
iminary-data-set

14.Be able to make inference calls to a YOLOv2 model trained on preliminary
dataset.
Actors: Test images, YoloV2 .weights, darknet
Preconditions: Have darknet installed. Have a weights file that has been trained
through a sufficient number of iterations.
Postconditions: Darknet reports correct inference with a high degree of confidence.
Darknet outputs predictions.JPG. Visual inspections of predictions shows that boundary
boxes were drawn correctly around objects we are looking for (surgical tools). Boundary
boxes should not be drawn around objects it is not trained to recognize.
Event flow:

1. Select image from test set that was not used in training.
2. Execute command ./darknet detector test (…)
3. Darknet reports inference with confidence level.
4. Darknet correctly recognizes objects we trained it to identify.
5. Darknet does not recognize objects it was not trained to identify.

 Alternate path: If darknet was not built the executable will not be runnable. If the
training was insufficient or the object is too obscured darknet will fail to recognize.
Trello: https://trello.com/c/hWP6y4tp

15.Be able to run tests in Xcode to test HVStream application.
Actors: HVStream, Xcode
Precondition: Xcode is running and HVStream application is loaded.
Postcondition: All tests are run and return successfully
Flow of Event:

1. The testing conditions are activated and all testing functions run one at a time.
2. Xcode returns if all conditions were properly executed or not.

Alternative Paths:
1. Test failed. Something is wrong with the code. Fix immediately

Trello: https://trello.com/c/VxAYnzAn

https://trello.com/c/hWP6y4tp
https://trello.com/c/VxAYnzAn

16.Lambda AWS SDK Prediction Upload to S3 .
Actors: AWS Lambda, AWS S3, Darknet, YoloV2, AWS EC2
Precondition: AWS Lambda is running and unprocessed bucket is triggered.
Postcondition: Prediction is uploaded to processed bucket
Flow of Event:

1. Lambda runs the processing commands through EC2
2. EC2 runs darknet and Yolo, depositing final prediction in proper S3 bucket.

Alternative Paths:
1. No output. Lambda code possibly incorrect, or trigger not set.

Trello: https://trello.com/c/0CEzP5cr/65-lambda-aws-sdk-prediction-upload-to-s3

17.Lambda SSH and Darknet Image/Video Execution .
Actors:AWS Lambda, AWS EC2, AWS S3, Darknet, Yolo
Precondition: AWS Lambda is running and unprocessed bucket is triggered.
Postcondition: Darknet will run and generate a final prediction.
Flow of Event:

1. Lambda runs the processing commands through EC2
2. EC2 runs darknet, which triggers Yolo and begins executing.
3. Darknet generates a final output file and places it in a position such that
Lambda can access it.

Alternative Paths:
1. No output. Lambda code possibly incorrect, or trigger not set.

Trello: https://trello.com/c/nlKUouBb/64-lambda-ssh-and-darknet-image-video-execution

18.Lambda Function triggered by Web App to download PowerPoint of Surgery
Stats
Actors: User, AWS S3 Servers, AWS Lambda, Web App
Precondition: Surgery cards exist on Web App and User presses the download data
button
Postcondition: PowerPoint appears in download folder of User’s machine
Flow of Events:

1. User selects to download data
2. Lambda function is triggered and PPTX parses .txt file passed in
3. Parsed information is feed into PowerPoint on with python-pptx
4. Web download of PowerPoint occurs

Alternative Paths:
1. If web download fails, lambda will attempt once more. If it fails again, Cloud

Watch will notify user
2. If .txt file is not present or is corrupted for corresponding video file, Cloud Watch

will notify user.
Trello: https://trello.com/c/TGhBKY6h
Github: Ready for Development

19.Send live video data from HVStream to Amazon S3
Actors: HVStream App, User, AWS S3 Servers

https://trello.com/c/TGhBKY6h

Precondition: User has opened the app
Postcondition: Data is live streamed and uploaded to the S3 servers, ready for real time
manipulation by the Assist-MD algorithms.
Flow of Events:

5. User selects their server and clicks live stream button
6. User begins live streaming.
7. Stream is uploaded directly to AWS servers.

Alternative Paths:
3. Specific Server is offline. Data will fail to send and app will stop the stream.

Trello:
1. https://trello.com/c/9HYVxrRh

Github: Ready for Development

20.Continuously query S3 to get newly uploaded files
Actors: boto script, AWS S3
Precondition: The specified S3 bucket exists
Postcondition: If new file is created, download it, if not, keep querying
Flow of Event:

1. Query bucket for newly created file
2. If the file exists, use AWS-SDK CP command to download it locally

Alternative Paths:
1. If file exists and does not download, Boto will retry three times and return error

Trello: https://trello.com/c/obXNmOQB
Github:
https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df39
6f4991b412f

21.Execute darknet on image file and generate prediction file on local server
Actors: boto script, Darknet, YoloV2
Precondition: A .jpg file is downloaded to the local server
Postcondition: A prediction .png output file is generated on the server
Flow of Event:

1. Once the file has successfully download, darknet will take over and perform
inference on the file

2. Once the output is generated, AWS SDK will copy the output to the processed
prefix

Alternative Paths: If darknet or AWS SDK fails, a catch block will be implemented to
handle these errors and the system will be notified of the fault
Trello: https://trello.com/c/OKsJ8fJ8
Github: Ready for Development

22.Execute darknet on video file and generate prediction file on local server
Actors: boto script, Darknet, YoloV2
Precondition: A .mov file is downloaded to the local server
Postcondition: A prediction .mov output file is generated on the server

https://trello.com/c/9HYVxrRh
https://trello.com/c/obXNmOQB
https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991b412f
https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df396f4991b412f
https://trello.com/c/OKsJ8fJ8

Flow of Event:
3. Once the file has successfully download, darknet will take over and perform

inference on the file
4. Once the output is generated, AWS SDK will copy the output to the processed

prefix
Alternative Paths: If darknet or AWS SDK fails, a catch block will be implemented to
handle these errors and the system will be notified of the fault
Trello: https://trello.com/c/pCijPkNj
Github:
https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df39
6f4991b412f

23.Upload prediction file on local server to aws S3 bucket
Actors: boto script, AWS S3
Precondition: An output .png or .mov file exists on the local server
Postcondition: The output file is in the correct S3 bucket under the “processed” prefix
Flow of Event:

1. Once an output file is generated by darknet, it is present on the local
server and uploaded to the the S3 bucket under the “processed” prefix

2. The prediction file is available in the correct aws S3 bucket under the
“processed” prefix.

Alternative Paths:
1. If the prediction file does not exist on the local server an error is output to the

console.
2. If the upload of the file to the correct bucket or prefix fails, an error is output to the

console.
Trello:: https://trello.com/c/p4VAZ7tE
Github:
https://github.com/brianhumphreys/Assist-MD/commit/76d9702fa183c79e467af95e0df39
6f4991b412f

https://trello.com/c/pCijPkNj
https://trello.com/c/p4VAZ7tE

UML Diagrams

React Web App UML
Our AppJS file is are overarching class that we used to structure the webpage Assist MD.
AppJS is in charge of rendering each of AssistMD Component Classes with the states: “video
resources”, “SelectedCardKey”, “SelectedVideoURL”, and “BaseURL”. The Assist MD utilizes
the getS3Object Utility Function to pull in the videos/images from our S3 buckets. Assist MD
renders both the FullCard which is a Component Class and the Card Arrow which is a Function.
They display each video’s title and statistics of each one as well as being responsible for
formatting the webpage.
Web App UML diagram:

Stand-in Server UML
The stand-in server is used as a substitute for the aws ec2 instance in case the instance fails.
The server downloads files from aws bucket, classifies them with a call to darknet, and then
uploads them to processed aws bucket. The server has variables corresponding to the aws
bucket names, keys, file names, and a list of states which keeps track of files downloaded to the
local machine. Functions include uploading, downloading files and accessing buckets. There is
also a darknet function call which makes use of the darknet api and yolo to do the classification.

iOS UML Diagram
UIViewController controls the entire app, and all the variables and classes are imported and
created in this class. The AWS classes are imported to the viewController, and their functions
are used in UIViewController to access AWS services. UIKit contains the basic buttons and
fields that all touchscreen applications have, and UIViewController implements the variables
listed under UIKit. AVFoundation contains the image and video handling services that we use as
containers to send to AWS. The FrameExtractor class contains our prototype live services.

AWS Server Interactions with iOS App and Web App: Overall System UML

The following UML diagram Is slightly different from the previous in its content and design. The
blue boxes within the AWS Server box represent AWS Services. The information inside each
box Is variables contained in the service or information that is stored within them. The arrows
denote what information is being passed between two services. The Picture also shows how
the AWS server frame work reacts with the two front end components whose break downs were
described in detail above.

Sequencing Diagrams

Image Inference Sequencing

The following time series sequencing chart depicts the flow of information from front end to back
end components when an image is sent to the server to be requested. The image will start in
the iOS hardware and end up on a web app hosted on S3.

Live Video Inference Sequencing
The following sequencing diagram is very similar to image inferences with the exception that the
front end web app receives video inferences frame by frame instead of just one frame.

Boto Server Sequencing

The following sequencing chart shows how the stand-in server interacts with aws s3 buckets
and darknet. The server queries the unprocessed s3 bucket folder for files. The file is
downloaded to the server, then the server calls darknet on the file. The output prediction file
from darknet is then uploaded to the processed prefix folder.

Assist-MD Technical Implementation - Prototyping

Github:

Our Github currently features the prototype of the Assist-MD Web App and the iOS App that
records and streams video data to an AWS S3 bucket. It also features a deployable lambda
function that incorporates Serverless Framework to update AWS services. As a backup, incase
AWS falters in some way, we have built a stand in server that performs the basic functionality
that the EC2 instance performs while listening to the S3 server and wathing for new objects to
download and infer. Testing is also included.

https://github.com/brianhumphreys/Assist-MD

iOS interfacing with HVStream:

Direct and quick video upload system to aws for use
with iphone. Three different cameras can be at play at a
time on the same AWS account for surgical scene
inferences. The data captured by the iPhone cameras
will be streamed into an S3 bucket, fed into our YOLOv2
network to be processed and inferred upon, sent back to
S3 and then streamed from Assist-MD Web App.

We utilize swift and integrate the AWS-SDK for the iOS
to connect directly with our resources on the AWS
website, specifically our S3 resources. The app can
name and upload both video and photos to any users
specific S3 bucket, as long as we know their access and
security keys, along with their bucket name and region.
These can all be changed instantly by the click of a
button as shown in the image to the right at the bottom
of the screen where options are displayed for AWS
accounts available to stream to. We are then ready to
begin processing the data with our YOLOv2 network.

Amazon Web Services (AWS) Backend:
The entry point of the AWS backend is the streaming of data from the iOS app to an S3 Bucket.
The Lambda function shown below is triggered by the creation a new object (i.e. whenever a file
is uploaded to it) in the S3 bucket specified in the Function Tree displayed in the left child of the
function

When the function is triggered, it receives data resources that describe in detail the object that
was created. This data is used to build a URL that can access the public file on S3. When
executed, the code below creates an SSH object and uses it to securely connect to a specified
host (not shown for security reason). In our case, an EC2 instance acts as a host and is used
as a vessel to execute image inferences, which the lambda function facilitates when the SSH
object calls its exec() method. The file is downloaded to the server, inferred upon by the
darknet command specified in the second .exec() method and then re-uploaded to the S3
bucket.

Image Recognition Component - YOLOv2 Network Structure:

For the image recognition portion of Assist-MD that will make inferences of the medical
equipment and personnel, the High Voltage Society has decided to implement an instance of
Joseph Redmon’s YOLOv2 network to make multiple object inferences in a single picture. The
below figure describes the structure of the YOLO network which implements some layers of
convolution.

Front End Assist-MD Web App - ReactJS:

React-JS Web Interface - The app prototype has been built using standard ReactJS formatting
with component and container folder structure. There are three individual page components
used in the rendering of the page shown below. The blue rectangle is an object called a
‘Surgery Card’ and when clicked, the red box know as the ‘Full Card’ is shown beneath it.
Inversely, the Full Card will disappear when clicked again. The video is displayed in the Full
Card.

Appendices

What Assist-MD Does Not Do

Technologically:

Assist-MD (AMD) has many implications attached to it upon reading the Requirements sheet.
One might think upon learning that AMD tracks medical personnel, that we will be building
profiles of individuals. All data received about a medical personnels facial structure, eye color,
build, etc. will be discarded. In a sense, every surgery will build its own environment of
personnel characteristics and instrument usage.

The algorithm will not be able to directly make instrument inferences of instruments while they
are in use. It is assumed that that the camera making instrument inferences will not be oriented
in the surgeons perspective but at the instruments not in use. From this data, process of
elimination will be used to figure out the instrument in use.

Surgically:

Although AMD will provide metrics of each surgery, no high-level analysis will be made on the
surgery. As an example, AMD will be able to figure out the instruments that were used the most
and the least and will also be able to know how many people were in the room at any given
time, but it will not be able to give the surgeon advice on what instruments to use in the future or
how to improve his performance. These high-level analyses will be left up to human intelligence
for now.

Technologies Employed

AWS Lambda - A snippet of code that is spun up through AWS by an event trigger. The
code takes event data as input and returns the desired output before the function
instance is deleted from the servers and then saved as an image.

AWS S3 - Amazon Simple Storage Service is storage for the Internet. It is designed to
make web-scale computing easier for developers. Amazon S3 has a simple web
services interface that you can use to store and retrieve any amount of data, at any
time, from anywhere on the web.

AWS Cloudfront - Amazon CloudFront is a web service that speeds up distribution of
your static and dynamic web content, such as .html, .css, .js, and image files, to your
users. CloudFront delivers your content through a worldwide network of data centers
called edge locations. When a user requests content that you're serving with
CloudFront, the user is routed to the edge location that provides the lowest latency (time
delay), so that content is delivered with the best possible performance.

AWS MediaConvert - AWS Elemental MediaConvert is a file-based video transcoding
service with broadcast-grade features. It allows you to easily create video-on-demand
(VOD) content for broadcast and multiscreen delivery at scale. The service combines
advanced video and audio capabilities with a simple web services interface and
pay-as-you-go pricing. With AWS Elemental MediaConvert, you can focus on delivering
compelling media experiences without having to worry about the complexity of building
and operating your own video processing infrastructure.

AWS MediaLive - AWS Elemental MediaLive is a broadcast-grade live video processing
service. It lets you create high-quality video streams for delivery to broadcast televisions
and internet-connected multiscreen devices, like connected TVs, tablets, smart phones,
and set-top boxes. The service works by encoding your live video streams in real-time,
taking a larger-sized live video source and compressing it into smaller versions for
distribution to your viewers. With AWS Elemental MediaLive, you can easily set up
streams for both live events and 24x7 channels with advanced broadcasting features,
high availability, and pay-as-you-go pricing. AWS Elemental MediaLive lets you focus
on creating compelling live video experiences for your viewers without the complexity of
building and operating broadcast-grade video processing infrastructure.

AWS EC2 - Amazon Elastic Compute Cloud (Amazon EC2) provides scalable
computing capacity in the Amazon Web Services (AWS) cloud. Using Amazon EC2
eliminates your need to invest in hardware up front, so you can develop and deploy
applications faster. You can use Amazon EC2 to launch as many or as few virtual
servers as you need, configure security and networking, and manage storage. Amazon
EC2 enables you to scale up or down to handle changes in requirements or spikes in
popularity, reducing your need to forecast traffic.

CUDA - is a parallel computing platform and programming model that makes using a
GPU for general purpose computing simple and elegant. The developer still programs in

http://developer.nvidia.com/cuda/get-started-parallel-computing

the familiar C, C++, Fortran, or an ever expanding list of supported languages, and
incorporates extensions of these languages in the form of a few basic keywords.

Docker - Docker is a tool designed to make it easier to create, deploy, and run
applications by using containers. Containers allow a developer to package up an
application with all of the parts it needs, such as libraries and other dependencies, and
ship it all out as one package. By doing so, thanks to the container, the developer can
rest assured that the application will run on any other Linux machine regardless of any
customized settings that machine might have that could differ from the machine used for
writing and testing the code.

OpenCV - OpenCV (Open Source Computer Vision Library) is a powerful open source
computer vision and machine learning software library. OpenCV was built to provide a
common infrastructure for computer vision applications and to accelerate the use of
machine perception in the commercial products.

ReactJS - In computing, React (also known as React.js or ReactJS) is a JavaScript
library[2] for building user interfaces. It is maintained by Facebook and a community of
individual developers and companies. React can be used as a base in the development
of single-page or mobile applications. Complex React applications usually require the
use of additional libraries for state management, routing, and interaction with an API.

SSH - also known as Secure Shell or Secure Socket Shell, is a network protocol that
gives users, particularly system administrators, a secure way to access a computer over
an unsecured network. SSH also refers to the suite of utilities that implement the SSH
protocol. Secure Shell provides strong authentication and encrypted data
communications between two computers connecting over an open network such as the
internet. SSH is widely used by network administrators for managing systems and
applications remotely, allowing them to log into another computer over a network,
execute commands and move files from one computer to another.

Swift - Swift is a programming language that was created to be extremely safe and fast.
It is utilized in various mobile and cloud platforms, including all of apple’s products and
software, which is where we will be utilizing it.

Tensorflow - TensorFlow™ is an open source software library for high-performance
numerical computation. Its flexible architecture allows easy deployment of computation
across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of
servers to mobile and edge devices.

YOLOv2 Algorithm - Most other computer vision algorithms repurpose classifiers or
localizers to perform detection. They apply the model to an image at multiple locations
and scales. High scoring regions of the image are considered detections. YOLO use a
totally different approach. It applies a single neural network to the full image. This

https://github.com/docker/docker
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/JavaScript_library
https://en.wikipedia.org/wiki/JavaScript_library
https://en.wikipedia.org/wiki/React_(JavaScript_library)#cite_note-react-2
https://en.wikipedia.org/wiki/User_interfaces
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/State_management
https://en.wikipedia.org/wiki/Web_framework#URL_mapping
https://en.wikipedia.org/wiki/API
https://searchsecurity.techtarget.com/definition/authentication
https://searchsecurity.techtarget.com/definition/encryption

network divides the image into regions and predicts bounding boxes and probabilities
for each region. These bounding boxes are weighted by the predicted probabilities.

Simple-SSH - A wrapper for the ssh2 client module by Brian White which makes it
easier to run a sequence of commands over SSH.

Python-pptx - A typical use would be generating a customized PowerPoint presentation
from database content, downloadable by clicking a link in a web application. Several
developers have used it to automate production of presentation-ready engineering
status reports based on information held in their work management system. It could also
be used for making bulk updates to a library of presentations or simply to automate the
production of a slide or two that would be tedious to get right by hand.

Pandas - In computer programming, pandas is a software library written for the Python
programming language for data manipulation and analysis. In particular, it offers data
structures and operations for manipulating numerical tables and time series. It is free
software released under the three-clause BSD license. The name is derived from the
term "panel data", an econometrics term for data sets that include observations over
multiple time periods for the same individuals.

https://github.com/mscdex/ssh2
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Software_library
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/3-clause_BSD_license
https://en.wikipedia.org/wiki/Panel_data
https://en.wikipedia.org/wiki/Econometrics

