
Pivotal Interface for Kubernetes
Product Requirements Document v1

Position Name Contact

Team Lead Jesmar Castillo jesmar@ucsb.edu

Team Scribe Marco Chavez mchavez00@ucsb.edu

Developer Durva Kapadne durva@ucsb.edu

Developer Jack Liu jackliu@ucsb.edu

Developer Kindy Tan ktan@ucsb.edu

Product Name: kubernetes konekt Team Name: The Goodfellas

1. Background
Kubernetes is a platform that is made to revolutionize the way that container based
applications are released and tested. Kubernetes makes use of Docker containers that
package and run an application along with all its dependencies in an isolated
environment, eliminating errors experienced from running an application on different
machines. Unlike a regular virtual machine, Docker containers do not need a guest
operating system, making deployment lightweight.

Kubernetes builds on top of this by automating the deployment, scaling, and
management of containerized applications within a cluster of computers. Through a
master server, a cluster and its nodes can be managed, distributing containers among
the nodes.

The lack of connectivity between users with containers and users with clusters acts as a
barrier for deployment. Currently there is not an interface that streamlines connecting
these two groups.

2. Project Overview

The Minimum Viable Product (MVP) will be a Web UI that will connect users all over the
world and allow them to run containers on remote clusters.

3. Project Specifics
The frontend of the Web UI will consist of HTML, CSS, and JAVA elements. The
backend will make use of Spring MVC framework. Spring MVC provides many of the
tools for front and back end logic, taking a model, modifying data with the controller, and
sending it to the view to display it to the user. The Web UI will be hosted on the Pivotal
Web Service (PWS) and the database will be managed with MySQL.

The Hibernate framework is used as an object-relational mapper tool for JAVA, but it
also provides other APIs. The Hibernate APIs we are using include Hibernate ORM
which allows us to map class objects to table entries on a database and Hibernate
Validator to validate user input has correct structure using annotation driven
development.

The security of the website will make use of Spring Security. This framework
streamlines user authentication and access control. This allows for easy management
of user logins and registrations.

Google Cloud Platform (GCP) will be used to help with launching and testing
Kubernetes for our personal use. The Kubernetes API is used to access the seller’s
clusters. We can easily send a commands over to the designated cluster and be able to
access it.

4. Assumptions
We are assuming that users have containers that are fully functional and smoothly
running. Buyers will be responsible for managing all their own containers and making
sure their containers run smoothly so that sellers are able to run them on their clusters.
We are also assuming that most users understand how to use Kubernetes or have a
basic understanding thereof. Sellers have already set up their clusters before being
listed to other users and are ready to accept containers.

5. System Architecture Overview

High Level Diagram

User Interaction and Design
Users of the service must register for either a buyer or seller account. Sellers are users
that already have a kubernetes cluster running. To list their cluster onto our service,
they shall fill out a form with the cluster’s IP address and submit for a review. Buyers on
the other hand will upload images to our server and manage them through their
dashboard.

The general workflow for the buyer will consist of a uploading an image, selecting a
cluster from a list of IP addresses, and submitting the request to use the cluster. The
seller at this point will accept incoming requests and will automatically deploy the image
onto their cluster through the Kubernetes API.

6. User Stories

USER STORY ACCEPTANCE CRITERIA
As a buyer/seller, I can register to the
website.

Scenario 1: User has is not registered.
Given user has never registered before.
And user is not currently logged in.

When user fills out registration form.
And user clicks submit.
And account has been created.
Then user will be prompted to confirm
account via email.

Scenario 2: User is registered.
Given the user has an account.
And the user is not currently logged in.
When user fills out registration form.
And user clicks submit
Then error message will appear that account
already exist.

As a buyer/seller, I can login to the website. Scenario 1: User is registered.
Given the user is not logged in
And enters a valid username and password
When the user clicks submit
Then their dashboard is displayed
And a successful login message pops up.

Scenario 2: Invalid username or password.
Given the user is not logged in
And enters an invalid username or password
When the user clicks submit
Then an invalid message will appear
And will be asked to re-enter their
information.

Scenario 3: User forgets username.
Given the user is not logged in
And they are registered
When they click username recovery
Then they will receive an email with their
username
And will be redirected to the login page.

Scenario 4: User forgets password.
Given the user is not logged in
And they are registered
When they click password recovery
Then they will receive an email to change
their password
And will be redirected to the password
change page.

As a seller, I can upload a cluster IP to my Scenario 1: Seller has not listed their cluster.

account so that it can be listed publicly. Given the seller already has a cluster running
And they have their cluster IP address
When the seller inputs their IP address
Then the IP address is posted
And a confirmation message pops up.

Scenario 2: Seller has their cluster listed.
Given the seller has a cluster running
And they have their cluster IP address
When the seller inputs their IP address
Then the posting is ignored
And a rejection message pops up.

As a buyer, I can upload a container image.

Scenario 1: Buyer has not uploaded their
container image
Given that the buyer has navigated to the
storage menu
And they have their container image
When they upload the image
Then their storage menu will update
And a confirmation message pops up.

Scenario 2: Buyer has uploaded container
images before.
Given that the buyer has navigated to the
storage menu.
And that they want to use an old container
image.
When they click on their desired image.
And they click on submit.
Then a confirmation message will pop up.

As a buyer, I can schedule a container image
so that it can run on a cluster at a different
time.

Buyer has their container image already
uploaded
Given that they found which cluster to work
use
And when they want the cluster to run the
image
When they schedule the cluster in their
dashboard
Then the request is sent to the seller
And a confirmation/rejection message
appears after the seller confirms/denies the
request.

As a buyer, I can run a cronJob. Seller has a cronJob and an image to run.
Given that buyer has already uploaded their

container as an image.
And uploaded their cronJob file
Then seller will run uploaded cronJob and
uploaded image on cluster

As a user, I can remove an image. User does not need image anymore
Given that user has already uploaded an
image
And user no longer needs the image
Then user should be able to delete image by
clicking on a ‘delete image’ button
And user will be prompted with a message to
confirm deletion, where the user can then
confirm or cancel to stop deletion

As a user, I can view my payment information
on my dashboard after I have bought or sold
a cluster.

User has bought/sold a cluster
Given that they have navigated to their
account settings
And they selected the payment information
option
Then the user will gain access to their
payment information
And will be given an option to update their
payment information

As a buyer, I can communicate (chat) with the
cluster owner.

Scenario 1: chat between two users
Given that user wants to start a chat with
another user
And both users have a Kubernetes Konekt
account
Then user can start a chat by clicking on the
‘start chat’ button
And users will be connected and they will be
able to chat

Scenario 2: group chat
Given that user wants to start a chat with
other users
And all users have Kubernetes Konekt
accounts
Then a user can start a chat by clicking on
the ‘start chat’ button and add other users
And users will be connected and they will be
able to chat

As a buyer, I can see other available clusters
that are listed publicly.

Buyer wants to browse available publicly
listed clusters.

Given that they have navigated to their
dashboard
And selected the available clusters option
Then the user will be displayed a list of
publicly listed clusters
And will be given a description with
information about each cluster.

As a user, I can manage my user settings on
a dashboard.

User wants to change settings (email,
password, payment information).
Given that the user is logged into their
account.
And has selected the account settings.
Then the user will be shown a list of settings
that they can change.
And they will be sent a confirmation email.

7. Appendices

What we’re NOT Doing
We are not going to make this into a mobile app. Connecting users through Kubernetes
would be possible through a mobile, but we want to focus on developing a web
application first. We are also not creating an interface to create a Kubernetes cluster. As
previously mentioned, sellers will be responsible for making their own clusters, and then
using our web app to connect to other users.

List of Technologies
● Web Stack

○ Java: Main language used in creating spring based application(s).
○ Spring Core: IoC and Dependency Injection features.
○ Spring MVC: Model-View-Controller (MVC) architecture and components

that can be used to develop flexible and loosely coupled web applications.
○ Spring Security: Authentication, authorization and other security features

for enterprise applications.
○ Hibernate ORM / Validator: Object-relational mapper tool and validates

user input.
○ MySQL: Relational database management system.

● Cluster Stack
○ Minikube: Local cluster service.
○ Pivotal Container Service (PKS): Deploy and run containerized

workloads across private and public clouds.
○ Google Cloud Platform (GCP/GKE): Series of cloud services including

cluster management for running your Docker containers.

