
Production Requirements Document

Team: Not Our (Seg)Fault
Project: AuthentiKey

1/12/17

Contents

1 Introduction 1
1.1 Problem & Background . 2
1.2 Innovation & Objective . 2
1.3 Assumptions . 2

2 Implementation 3
2.1 Metadata Logging . 3
2.2 Machine Learning Cluster . 4
2.3 Data Storage . 4
2.4 Back-end Server/Internal API . 4
2.5 System Models . 5

3 User Interface 6

4 Requirements 7
4.1 User Stories . 7

A Technologies Employed 12

1 Introduction

Team Members: Alex Wein (lead), Ashlynn Cardoso (scribe),
Clara Frausto, Caitlin Scarberry, William Bennett

Team Mentors: Alec Harrell, Renato Untalan

1

mailto:awein@umail.ucsb.edu
mailto:ashlynncardoso@umail.ucsb.edu
mailto:cfrausto@umail.ucsb.edu
mailto:caitlinscarberry@umail.ucsb.edu
mailto:wbennett@umail.ucsb.edu

1.1 Problem & Background

Computer systems are inseparable from modern daily life, making
secure authentication more vital than ever. However, despite its
many flaws, the most common authentication method remains the
password. Users frequently reuse passwords across different plat-
forms, which increases the severity of database breaches; users often
set insecurely short passwords to make them easier to remember;
and once a password has been acquired by a malicious party, that
party can immediately use the password. Additional authentication
is clearly required for a secure system.

1.2 Innovation & Objective

The end goal of our project is a robust authentication system using
keystroke dynamics. Keystroke dynamics, which analyze how a user
types, are a biometric authentication method that avoids the pitfalls
of both methods listed above. The vast majority of users interface
with their devices through a keyboard, whether that is an on-screen
mobile keyboard or the physical keyboard of a personal computer.
This eliminates the need for separate devices or specialized hard-
ware.

1.3 Assumptions

• The majority of users have both access to and the ability to
use a physical keyboard. This is obviously not true for every
user, and so Authentikey will not be able to replace standard
two-factor authentication for users who, for example, primarily
use mobile devices or use text-to-speech as their main form of
input.

• A user’s typing style uniquely identifies them.

• A user’s typing style will not dramatically change, so Authen-
tikey will need to be retrained if a user, for example, sustains
a serious arm or hand injury.

• Some portion of users will find typing a randomly generated
sentence less cumbersome than using a separate device for two-

2

factor authentication, and so would prefer our system over most
current methods of 2FA.

2 Implementation

Our high-level architecture is diagrammed below, and is structured
as follows: we expose a front facing API that will integrate with an
end service and capture the necessary data. The data gets relayed
to our back-end server, which will communicate with our machine
learning cluster to construct models of keyboard metadata and use
those models to verify a user’s identity. Our back-end server also
communicates with a DB that stores user data, such as a unique user
ID and the verification challenges that have been issued for that user.

Figure 1: High Level Architecture Diagram

2.1 Metadata Logging

The first component of our system is our keylogger, which records
the dwell time (how long a key is pressed) and the flight time (time

3

between keypresses) while a user types a randomly generated chal-
lenge phrase. This is the front facing API of our system. It will be
able to be integrated in various login flows, for now we have integ-
rated it with our own front end web portal.

2.2 Machine Learning Cluster

The machine learning cluster, via Google Tensorflow, does the bulk
of the data processing where it builds models from user’s train-
ing data and performs classification based on existing models. The
cluster is treated mostly as a black box from the perspective of the
rest of the system, as it just returns a probability of whether or not
the user who typed the string is who they claim to be.

2.3 Data Storage

We use a DynamoDB living on AWS for storage of all our user data.
NoSQL is used due to a lack of schema: we store userIDs as keys
and a binary blob representing their corresponding ML model based
on their keyboard metadata.

2.4 Back-end Server/Internal API

The backbone of our system is a Django server that acts as an in-
terface between all of the different services/systems we use. Firstly,
it processes the raw metadata input from our front end API and
parses and serializes it before serving it up to our ML cluster. It
also manages our data storage by making requests to add, remove,
update, and verify users. In this case both the ML cluster and our
DB have internal API wrappers which our server uses for commu-
nication and management.

4

2.5 System Models

Class Diagram

Figure 2: Class Diagram

Sequence Diagram For Logging In:

Figure 3: Sequency Diagram: Logging in

5

Sequence Diagram For Activating or Updating Authen-
tiKey 2-Factor Authentication:

Figure 4: Sequence Diagram: Activating or Updating AuthentiKey 2-Factor
Authentication

3 User Interface

When a user attempts to log in with AuthentiKey, after entering a
valid username and password, they will be presented with a short
typing challenge:

Figure 5: Login using Authentikey

6

When a user attempts to activate AuthentiKey for their account,
they will be presented with a longer prompt:

Figure 6: Activation of Authentikey

4 Requirements

4.1 User Stories

1. As a user, I want to log in using AuthentiKey as a second factor
of authentication.

(a) Acceptance Test: Upon entering correct username and pass-
word at a login portal, the user is presented with a typing
challenge which must be passed to log in.

(b) Implementation: https://github.com/caitscarberry/django-
authentikey/commit/927708da62bb4e37ae2f52a3168bc934b2290515

2. As a developer, I want to be able to add a new user and add
their metadata to our backend.

(a) Acceptance Test: Upon return of a model from the ML
cluster the user should be added into the user table on the
database with a new uid that is returned from the API

(b) Implementation: https://github.com/MadRubicant/not-our-
segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007

7

https://github.com/caitscarberry/django-authentikey/commit/927708da62bb4e37ae2f52a3168bc934b2290515
https://github.com/caitscarberry/django-authentikey/commit/927708da62bb4e37ae2f52a3168bc934b2290515
https://github.com/MadRubicant/not-our-segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007
https://github.com/MadRubicant/not-our-segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007

3. As a developer, I want to be able to delete a user’s username
and metadata from our backend.

(a) Acceptance Test: Upon making a request to delete a user,
for whatever reason, the API, provided a uid, should re-
move the user from the database and return a success code
(True/False)

(b) Implementation: https://github.com/MadRubicant/not-our-
segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007

4. As a developer, I want to be able to update a user’s metadata
so that the user can retrain if their typing style changes.

(a) Acceptance Test: Upon retraining a user and getting a
response from the ML cluster the user, corresponding to
uid, should have their metadata updated in the database
and the API should return a success code (True/False).

(b) Implementation: https://github.com/MadRubicant/not-our-
segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007

5. As a developer, I want to be able to validate a user based on
their keyup and keydown time.

(a) Acceptance Test: Upon receiving user input from the chal-
lenge phrase the database should be able to compare data
returned from the ML model to the metadata stored in the
database and return a decision regarding the validity of a
user (True/False).

(b) Implementation: https://github.com/MadRubicant/not-our-
segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007

6. As a user I want to see a new, normal looking, challenge sen-
tence phrase every time I authenticate.

(a) Acceptance Test: A user logs in once using AuthentiKey,
logs out, and logs in again. The challenge phrase presented
in each login should be unique.

(b) Implementation: To do, with high priority.

8

https://github.com/MadRubicant/not-our-segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007
https://github.com/MadRubicant/not-our-segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007
https://github.com/MadRubicant/not-our-segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007
https://github.com/MadRubicant/not-our-segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007
https://github.com/MadRubicant/not-our-segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007
https://github.com/MadRubicant/not-our-segfault/commit/8f8e2ac7f5d1f058f36d53aa5bad32405c3bc007

7. As a user I want to have a low rate of failed authentications
due to the failure of the machine learning/system.

(a) Acceptance Test: When a user tries to log into their own
account, nine out of ten authentication attempts should
allow them access.

(b) Implementation: To do, with medium priority.

8. As a developer/admin I want to minimize the times a user is
falsely authenticated to maximize security.

(a) Acceptance Test: When a user attempts to log into an
account that is not theirs, nine out of ten authentication
attempts should fail.

(b) Implementation: To do, with medium priority.

9. As a developer I want the machine learning model to be able
to utilize metadata on all possible keys on the keyboard (viz.
Keyboard agnostic).

(a) Acceptance Test: A user using a non-qwerty keyboard is
able to activate AuthentiKey and use it as a second factor
in logging in, with an 80% success rate.

(b) Implementation: To do, with high priority.

10. As a user, I want to be able to activate AuthentiKey as a form
of two-factor authentication.

(a) A user is able to go to a page where they are presented
with a typing challenge. After completing and submitting
the challenge, the user should be able to log in using Au-
thentiKey as a second factor.

(b) Implementation: To do, with high priority.

9

11. As a user, I want to be able to activate AuthentiKey as a form
of two-factor authentication.

(a) Acceptance test: A user is able to go to a page where they
are presented with a typing challenge. After completing
and submitting the challenge, the user should be able to
log in using AuthentiKey as a second factor.

(b) Implementation: https://github.com/caitscarberry/django-
authentikey/commit/ba7a67ef62ead4f5b28044bfb78d07e3bb41391a

12. As a developer, I want a user to be presented with an Authen-
tiKey challenge only if that user has activated AuthentiKey.

(a) Acceptance test: A user who has not activated Authen-
tiKey can log in with only their username and password.
A user who has activated AuthentiKey will be presented
with a typing challenge.

(b) Implementation: https://github.com/caitscarberry/django-
authentikey/commit/10cb0efd3b85f1255635f0e6311fa114417cc7da

13. As a developer, I want to be able to use ML to remove outliers
from metadata that a user passes.

(a) Acceptance test: After the ML combs through the metadata,
there should be no extreme outliers in the user’s metadata.

(b) Implementation: https://github.com/MadRubicant/not-our-
segfault/commit/535d051e17c0799769ebe576e3869e165bb7460

14. As a developer, I want each user to have an unique threshold
value that accounts for their individual consistency.

(a) Acceptance test: Each user’s threshold value should be cal-
culated based on how much variance a user has with mul-
tiple authentications, rather than some hard coded value.

(b) Implementation: To do, with medium priority

10

https://github.com/caitscarberry/django-authentikey/commit/ba7a67ef62ead4f5b28044bfb78d07e3bb41391a
https://github.com/caitscarberry/django-authentikey/commit/ba7a67ef62ead4f5b28044bfb78d07e3bb41391a
https://github.com/caitscarberry/django-authentikey/commit/10cb0efd3b85f1255635f0e6311fa114417cc7da
https://github.com/caitscarberry/django-authentikey/commit/10cb0efd3b85f1255635f0e6311fa114417cc7da
https://github.com/MadRubicant/not-our-segfault/commit/535d051e17c0799769ebe576e3869e165bb74602
https://github.com/MadRubicant/not-our-segfault/commit/535d051e17c0799769ebe576e3869e165bb74602

15. As a developer, I want the ML to be able to update the threshold
value with each successful authentication.

(a) Acceptance test: A user should be able to consistently au-
thenticate themselves despite increasing variance in key-
strokes over time.

(b) Implementation: To do, with medium priority

16. As a user, when I log in, I want to know before completing the
typing challenge if AuthentiKey is down.

(a) Acceptance test: While the AthentiKey server is down,
a user who has AuthentiKey activated and gets past the
username/password prompt should be presented with an
error message.

(b) Implementation: https://github.com/caitscarberry/django-
authentikey/commit/10cb0efd3b85f1255635f0e6311fa114417cc7da

17. As a developer, I want ML to create a new challenge string
from a corpus of my choosing.

(a) Acceptance test: The ML can use words/phrases from the
chosen corpus to generate a challenge string.

(b) Implementation: https://github.com/MadRubicant/not-our-
segfault/commit/3322a5a42937c7119ef31ff7e66ebdafb7eeaa28

18. As a developer, I want to be able to split one large file of a
user’s metadata to track changes within one large paragraph.

(a) Acceptance test: Given a five and a denomination to split,
the function returns that number of pieces of metadata.

(b) Implementation: https://github.com/MadRubicant/not-
our-segfault/commit/b6eb1feb557047e18b129e3a58c63228fae82868

19. As a developer, I want to use a fuzzy extractor to securely store
metadata on the server.

(a) Acceptance test: The fuzzy extractor successfully maps the
metadata into a format that is deterministically hashable.

(b) Implementation: To do, with low priority.

11

https://github.com/caitscarberry/django-authentikey/commit/10cb0efd3b85f1255635f0e6311fa114417cc7da
https://github.com/caitscarberry/django-authentikey/commit/10cb0efd3b85f1255635f0e6311fa114417cc7da
https://github.com/MadRubicant/not-our-segfault/commit/3322a5a42937c7119ef31ff7e66ebdafb7eeaa28
https://github.com/MadRubicant/not-our-segfault/commit/3322a5a42937c7119ef31ff7e66ebdafb7eeaa28
https://github.com/MadRubicant/not-our-segfault/commit/3322a5a42937c7119ef31ff7e66ebdafb7eeaa28
https://github.com/MadRubicant/not-our-segfault/commit/b6eb1feb557047e18b129e3a58c63228fae82868
https://github.com/MadRubicant/not-our-segfault/commit/b6eb1feb557047e18b129e3a58c63228fae82868

20. As a user, I want to be able to disable AuthentiKey as a form
of two-factor authentication.

(a) Acceptance test: By visiting /authentikey/deactivate, a
logged-in user is able to deactivate AuthentiKey. After
this, they will be able to log in without being presented
with a typing challenge.

(b) Implementation: To do, with low priority.

Appendix

A Technologies Employed

• Django

• AWS

• TensorFlow

• DynamoDB

• JavaScript/HTML/CSS

• Python

12

	Introduction
	Problem & Background
	Innovation & Objective
	Assumptions

	Implementation
	Metadata Logging
	Machine Learning Cluster
	Data Storage
	Back-end Server/Internal API
	System Models

	User Interface
	Requirements
	User Stories

	Technologies Employed

