

Project Requirements Document v2
Project Title: Automated 3 Way Match (tentative)

Team Name: $-flow

Members: Email:
● Millan Batra [Lead] millanbatra@umail.ucsb.edu

● Yoon Lee [Scribe] yoonlee@ucsb.edu

● Dennis Fong dfong@ucsb.edu

● Alexander Kang alexanderkang@ucsb.edu

● Alexander Yuen atyuen@ucsb.edu

Intro

Problem

The current purchase order pipeline imposes up to a 24 hour delay before the data is available

online and has the potential for human error. This is due to the large amount of manual input

required when attempting to match a purchase order, shipping order, and shipping invoice. This

process continues to have many steps which introduce errors and create delays for planners,

purchasers, and accountants.

Project Specifics

We will be creating a mobile app that will help reduce the errors and delays associated with the

purchasing process. Our mobile application will allow users to take pictures of purchase orders,

shipping orders, and shipping invoices and upload the relevant data to our system. Once

uploaded, we will match the documents to one another and map this back to the customer’s

ERP system.

Innovation

This mobile application aims to reduce delays in the purchase order pipeline by providing a

clean and efficient platform that automates document matching. Companies are stuck in the

past passing around paperwork between companies and scanning documents into their ERP

systems. Our service will be the bridge that helps bring companies into the present by

automating the most inefficient parts of the purchase order pipeline.

Goals

The goal of $-Flow is to help alleviate the delay between the time an invoice is created and the

time for it to be inputted into a company’s ERP system. Our app will also have an OCR pipeline

which will be able to identify and parse invoices when given an image. Then match related

invoices and allow companies to retrieve this information from our database.

Background

There are no systems currently in place to address these inefficiencies. With this solution, we

will help Elementum with their mission to transition the world from one based on excel

spreadsheets and emails to one based solely on data.

Assumptions

The documents that we are parsing will contain deviants; each company will have multiple ways

of expressing important data. Documents given to the system should be printed and contain no

handwriting. We will not be expected to parse handwritten text. Upon opening the app, we

assume the user’s device will have strong connectivity to the internet and no interference. The

user will already have an Elementum account and thus have access to the mobile application’s

service. Once document matching has completed, it is the responsibility of the company to grab

the data from our system as we do not have access to their enterprise resource planners.

System Architecture

Mobile App

The mobile app will be the platform for taking pictures and matching shipping orders, purchase

orders, and shipping invoices. Users can register under their respective companies and will be

restricted to viewing those company’s documents. The app will upload images to an AWS S3

bucket and make API calls to the RESTful web service to notify users whether the document has

been matched or not. The mobile app is developed in React-Native allowing us to deploy our

application to both Android and IOS.

Microservice: OCR Pipeline

The OCR pipeline will receive requests from the mobile app to parse documents that are stored

in AWS S3. Once a request is received, an image is pulled down from AWS S3 and parsed. The

pipeline will take care of preprocessing, text identification, and text parsing. Once the text is

parsed, we will retrieve the relevant data from the parsed document and insert this into our

MySQL database.

Microservice: Document Matching

After the documents have been parsed, the parsed data will be matched against a pre-existing

document’s data stored in our backend database. If the data in the documents is exactly the

same, the backend will send an HTTP response to the mobile app to notify the user that the

document has been match. Furthermore, companies will be able to hit the api endpoint with

document data and receive all referenceable documents which match the search parameters.

System Requirements

1.1. Users can take pictures of invoices and decide whether or not to upload them

1.2.

a. Once a picture is uploaded, we store it in file storage system (AWS S3). Each image

will have a corresponding entry, with its metadata, in our database (AWS RDS) to keep

track of it.
b. A job will be queued for our OCR pipeline to parse the text from the image.

1.3. Our OCR pipeline will take jobs off our job queue and execute the OCR pipeline.

1.4. Once the text is parsed from the image, we store the parsed data in our database. (AWS

RDS)

1.5. After parsing is done, we match the recently parsed image with other referenceable

entries.

1.6. Waybill and invoice number is recorded and added into the database

1.7. We store the matched entries in our database.

2.1. Users can request document matches for documents give a unique id.

Requirements

User Interaction and Designs

OCR Pipeline Interaction

UML Class Diagram

UML Class Diagram Broken Down

API

Database

OCR Pipeline

Plain Old Java Object

User Stories

 User Story Acceptance Criteria

1. As a user, I want to be able
to navigate efficiently from
the home screen to the
settings or camera screen
and back.

Buttons on the screen for navigation works as expected.
It can also go back to the screen it was previously on.

2. As a user, I want to be able

to take a picture inside the

app and view it.

Take a picture of a document given a screen where a user

can take it. When the picture is taken, then the user can

view it and delete it if the user doesn’t like it.

3. As a user, I want to be able

to upload pictures taken.

Upload a picture given a picture and a user clicking

upload. When a user wants to upload a picture, then we

want to store it in a filesystem and store its metadata in a

database.

4. As a user, I want to be able

to log in to the app.

Log in to the app. Given a login screen and a user giving

username and password. On button click, user is logged

in and routed to another page.

5. As a company, I want to be

able to match

referenceable invoices so I
can save time.

Many documents in the database. Given many invoices.

When the picture is uploaded, the backend will handle

matching the data within the picture to other data in the

database.

6. As a user, I want to be

notified whether the

picture is matched or not.

Prompt me to retake picture with tips on better picture

e.g. better lighting, angle it perpendicular to the invoice.

Picture is of good quality but there was no match -
“contact supervisor”?

Otherwise, display “Match approved” screen.

7. As a user, I want all

participating parties to be

notified of the document

match.

After a ‘document match’ event in the app, participating

parties associated with the user will receive an e-mail

notification with a timestamp and location.

8. As a company, I want to be

able to invite users to join

my network.

Company can login to the app and on the ‘invite’ page,

can fill out a form (e-mail address?) to grant

authentication to a user signed up under that e-mail

address.

9. As a user, I want to be able

to select between PDF and

camera upload options for

images.

The application successfully uploads an image/pdf/file
from the camera/file system to AWS S3 bucket.

10. As a buyer, I want to be

able to select my sellers.

Given a screen that prompts the user to enter in the

seller, the app will make a GET request for authenticating

permission.

11. As a seller, I want to be able

to view my buyers

(multiple).

A page in the app will show a list of buyers that the user

can navigate through easily.

12. As a developer, I want to be
able to parse data from
uploaded documents.

The OCR pipeline should parse the waybill number,
invoice number(s), and any other relevant information
from the documents uploaded.

13 As a developer, I want the
OCR pipeline to activate
when there’s a new entry in
the AWS database

The OCR pipeline is activated as soon as a new image is
uploaded

14. As a user, I want to be able
to retrieve my documents’
parsed data from the OCR
pipeline.

After parsing the uploaded image, the OCR pipeline
should send the parsed data back to the user. The user
should confirm whether or not the data is correct.

15. As a developer, I want to be
able unit test our data
access objects and
mappers.

When any unit testing for the data layer occurs, a
reusable setup should be used to set up the testing
environment.

16. As a developer, I want to be
able to hit the backend
endpoints with HTTP
requests.

Given endpoints, a user should be able to send HTTP
requests and receive responses.

17 As a developer, I want to be
able to easily map data

Call a method which retrieves data from the database.
After retrieving data from the database, the data is place

from the database back to
Java.

18. As a developer, I want to be
able to store image
metadata in Java.

After the API endpoint is hit with a POST request. Given
the post request, a java object should be created
containing the relevant data.

19. As a developer, I want to be
able to store parsed
document data in a Java
object.

After relevant data is parsed from the document, a java
object should be created containing the parsed data. For
example, it should contain waybill, invoice#, and carrier.

20. As a developer, I want to be
able to map data stored in
Java classes to the
database.

After a SQL query has been executed and the data has
been returned, the data should be mapped into a java
object.

21. As a developer, I want to be
able to abstract data into
different entities.

For any data stored in a Image or Document class, there
is a related table which stores the data in the database

Sequence Diagram

Appendix
Purchase Order (PO) - Document issued by the seller to the buyer that indicates types,

quantities, and prices for purchased products/services

Sales Order (SO) - Document generated when a buyer purchases a product/service to confirm

the purchase order details

Sales Invoice - A bill sent to the customer after a sale requesting for payment

Shipping invoice - Document that accompanies the sold goods when shipped. Lists price,

quantity, and quality of goods and can also include PO and/or SO identifiers

Enterprise Resource Planner (ERP) - An ERP management information system integrates areas

such as planning, purchasing, inventory, sales, marketing, finance and human resources.

Tesseract - Library used to perform OCR. Comes with packages for many languages but we will

only be using english

OCR - Object Character Recognition - Process of recognizing characters in a given image

React Native - Framework that allows users to create universal mobile apps using Javascript

POJO (Plain Old Java Object) - Java object which can compiled under the jdk without any

extensions

Continuous Integration - Process of frequently merging in developer work into a shared

mainline

Continuous Deployment - Series of processes which allow code to be quickly and safely be

deployed to production

AWS S3 - Amazon S3 has a simple web services interface that you can use to store and retrieve

any amount of data

AWS RDS - Amazon RDS makes it easy to set up, operate, and scale a relational database in the

cloud

Docker - an application build and deployment tool which allows code to be packaged and

deployed in containers.

Jenkins - Server which helps automate the CI/CD pipeline.

Technologies Employed

Communications and Work Tools - JIRA, BitBucket, Slack

Document Parsing and OCR - Tesseract

Cloud Storage Tools - AWS S3, AWS RDS

Backend Development - Java

Mobile Development - React Native

CI/CD - Docker, Jenkins

