Project Requirements Document v2

Project Title: Automated 3 Way Match (tentative)

Team Name: S-flow
Members:
e Millan Batra [Lead]

® Yoon Lee [Scribe]

e Dennis Fong

o Alexander Kang

e Alexander Yuen
Intro

Email:
millanbatra@umail.ucsb.edu
yoonlee@ucsb.edu
dfong@ucsb.edu
alexanderkang@ucsb.edu
atyuen@ucsb.edu

Buyer uses ERP to make PO

}

Buyer mails/emails PO to seller

}

Automate

Seller manually inputs PO into ERP

IMPORTANT TERMS

Purchase Order (PO):
Describes the price, quality, and quality
of goods to be purchased.

Sales Order (SO):
Confirms the PO details.

Enterprice Resource Planner (ERP):
Creates SOs and POs based on a
forecast

Sales Invoice (Sl):

Describes price, quality, and quantiity of
goods in the shipment and may include
PO and/or SO identifiers.

Seller creates SO with ERP after confirming
buyer's PO

}

Seller mails/emails SO to buyer

}

Automate

Buyer manually inputs SO into ERP

J

Seller ships sold goods with shipping invoice

l

Buyer confirms goods recieved

Seller issues Sl to request payment after
confirmation

Buyer matches Sl with purchase order and
shipping invoice

Buyer gives payment if documents match

Automate

Problem

The current purchase order pipeline imposes up to a 24 hour delay before the data is available
online and has the potential for human error. This is due to the large amount of manual input
required when attempting to match a purchase order, shipping order, and shipping invoice. This
process continues to have many steps which introduce errors and create delays for planners,
purchasers, and accountants.

Project Specifics

We will be creating a mobile app that will help reduce the errors and delays associated with the
purchasing process. Our mobile application will allow users to take pictures of purchase orders,
shipping orders, and shipping invoices and upload the relevant data to our system. Once
uploaded, we will match the documents to one another and map this back to the customer’s
ERP system.

Innovation

This mobile application aims to reduce delays in the purchase order pipeline by providing a
clean and efficient platform that automates document matching. Companies are stuck in the
past passing around paperwork between companies and scanning documents into their ERP
systems. Our service will be the bridge that helps bring companies into the present by
automating the most inefficient parts of the purchase order pipeline.

Goals

The goal of S-Flow is to help alleviate the delay between the time an invoice is created and the
time for it to be inputted into a company’s ERP system. Our app will also have an OCR pipeline
which will be able to identify and parse invoices when given an image. Then match related
invoices and allow companies to retrieve this information from our database.

Background

There are no systems currently in place to address these inefficiencies. With this solution, we
will help Elementum with their mission to transition the world from one based on excel
spreadsheets and emails to one based solely on data.

Assumptions

The documents that we are parsing will contain deviants; each company will have multiple ways

of expressing important data. Documents given to the system should be printed and contain no

handwriting. We will not be expected to parse handwritten text. Upon opening the app, we

assume the user’s device will have strong connectivity to the internet and no interference. The

user will already have an Elementum account and thus have access to the mobile application’s

service. Once document matching has completed, it is the responsibility of the company to grab

the data from our system as we do not have access to their enterprise resource planners.

System Architecture

Company ERP
System

Mobile App

Microservice API Endpoint

Microservice:
Document Matching

Microservice:
OCR Pipeline

Image Storage

Database

\

Mobile App

The mobile app will be the platform for taking pictures and matching shipping orders, purchase
orders, and shipping invoices. Users can register under their respective companies and will be
restricted to viewing those company’s documents. The app will upload images to an AWS S3
bucket and make API calls to the RESTful web service to notify users whether the document has
been matched or not. The mobile app is developed in React-Native allowing us to deploy our
application to both Android and IOS.

Microservice: OCR Pipeline

The OCR pipeline will receive requests from the mobile app to parse documents that are stored
in AWS S3. Once a request is received, an image is pulled down from AWS S3 and parsed. The
pipeline will take care of preprocessing, text identification, and text parsing. Once the text is
parsed, we will retrieve the relevant data from the parsed document and insert this into our
MySQL database.

Microservice: Document Matching

After the documents have been parsed, the parsed data will be matched against a pre-existing
document’s data stored in our backend database. If the data in the documents is exactly the
same, the backend will send an HTTP response to the mobile app to notify the user that the
document has been match. Furthermore, companies will be able to hit the api endpoint with
document data and receive all referenceable documents which match the search parameters.

System Requirements

1.1. Users can take pictures of invoices and decide whether or not to upload them
1.2.
a. Once a picture is uploaded, we store it in file storage system (AWS S3). Each image
will have a corresponding entry, with its metadata, in our database (AWS RDS) to keep
track of it.
b. A job will be queued for our OCR pipeline to parse the text from the image.
1.3. Our OCR pipeline will take jobs off our job queue and execute the OCR pipeline.
1.4. Once the text is parsed from the image, we store the parsed data in our database. (AWS
RDS)
1.5. After parsing is done, we match the recently parsed image with other referenceable
entries.
1.6. Waybill and invoice number is recorded and added into the database
1.7. We store the matched entries in our database.
2.1. Users can request document matches for documents give a unique id.

Requirements

User Interaction and Designs

=
——

Login

Envite Users to my

network

<

View my Seller]

Notified!

—1
=

Send Notification

Match
Successful

Login

Take picture of
document

‘<

Document Match
Successful
Screen

Login

L

~
Matching fail, try | Invite Users to my .
again network Wiew ity Bupes
A

|

- Send Notification

OCR Pipeline Interaction

<<interface>>
IParse

DocumentReceiver

+ JSONObject
parse(String doc)

Parsed Data JandJ_Parse

UML Class Diagram

<<inferface>>
o = e e e L e e e e e e L e e e e S S S C i L o= s o Lo, OcrMatchApi
JdbiDocumentsDao :
|] - e a(); String F I Tl T S B s e T T S B e T s P R B T S e S T T T -
references Document DocumentMapper | | + sendAndRecewe(String): String i
+ quest). Up| Spons 1 ==interface=>
+insertDocument(Document, String): void i e + getMatchi Requestl: MatchiResponse f | OcrHandler IParse
+getDocument(String): Document String i 1 uses
+ getReferenceableDocuments(Sting). List<Document> saybill String + maplint, ResutSet, StatementContext) yay | —
- carrier: String * i
]
| ! | + ocrimage(String): JSONObject + parse(String): JSONObject
1
. 1
JdbilmagesDao ImageMapper OfaichApimpl |
= 1 uses T
| references U + RUN_API_MESSAGE String I :
g wloyed: B = | DocumentReceiver CompanyDocParse
P SmageDalaimage, Sting): void - enterpriseld: String + MEpnt, Result3et, SiaementContert L < runApiMethod(): String
‘ r:ﬁ:'na“:%-qid";:wa:eg ing). o uploadTime: DateTime map (i Restitel, Staemeatcontex) + sendAndReceive(String): String] 1
,‘}etu.‘;g;e: img; List<image> Zpmcesssd: Enalsan + uploadimage(UpioadRequest): UpioadResponse |
getUnprocessedimages. Lis . 2 = » oS -
gemad Raq (s, Nt ! + getDocumant(Siring, String): File + parse(String) JSONOBeet
1
S B L B H R " T : 1
Database &
OCR Pipeline
Pt e et e \
! I
1 - ~ i
! |
1 1
!]
! I
! I
! I
] MaichRequest MatchResponse UploadRequest UploadResponse |
i
1 [Fwaybir Sting YOIl String “employee. Siring | [Fuuia Sting |
! tched: Boolean - enterpriseld: String wiaybill String 1
| - utt: String | isParsed: Boolean I
i - uploadTime: Siring - url- String :
i - invoiceNum: String |
I - carrier String 1
1
]
! i

Plain old Java Object

UML Class Diagram Broken Down

API

<<interface>>
OcrMatchApi

+ runApiMethod(): String
+ sendAndReceive(String): String

+ uploadimage(UploadRequest): UploadResponse
+ getMatchResponse(MatchRequest): MatchResponse

7N

OcrMatchApilmpl

+ RUN_API_MESSAGE: String

— + runApiMethod(): String
+ sendAndReceive(String): String

+ uploadimage(UploadRequest): UploadResponse
+ getMatchResponse(MatchRequest): MatchResponse

Database

JdbiDocumentsDao

+ insertDocument(Document, String): void
+ getDocument(String): Document
+ getReferenceableDocuments(String): List<Document>

DocumentMapper

JdbilmagesDao

+ insertimageData(iImage, String): void
+ getlmage(String): Image
+ getUnprocessedimages: List<image>

+ map(int, ResultSet, StatementContext)

ImageMapper

Document maps
t - uuid: UUID
- invoiceNum: String
references - Waybl“ String
- carrier: String
Image
| references [~ Luid: UUID maps
W employee: String

- enterpriseld: String
- uploadTime: DateTime
- processed: Boolean

Database

+ map(int, ResultSet, StatementContext)

OCR Pipeline

s B M B i M A M A M \
|

: <<interface>> 1
I OcrHandler IParse |
: L uses | :
] I
: + ocrimage(String): JSONObject + parse(String): JSONObject :
! I
| uses 4 :
I ' !
_J : DocumentReceiver CompanyDocParse :
i i | |
' |
; | | |
I + getDocument(String, String): File + parse(String): JSONObject :

|
! I
J J
A L e e e e T e e e e e e -
OCR Pipeline

Plain Old Java Obiject

e e e o e e e e e e e T e o e e e e e
1

I 5

1

I

1

I

1

|

I MatchRequest MatchResponse UploadRequest UploadResponse

|

1 |- waybill: String i - waybill: String | - employee: String i - uuid: String fi

| - isMatched: Boolean - enterpriseld: String - wayhbill: String

: - url: String - isParsed: Boolean

1 - uploadTime: String - url: String

| - invoiceNum: String

: - carrier: String

1

|

N N S NS SN NS SN NN SN NN SN NS SN M S S S SN S S S M S SN S S M SN S M S S S S S S -

Plain old Java Object

- ————— —————————————

User Stories

User Story

Acceptance Criteria

As a user, | want to be able
to navigate efficiently from
the home screen to the
settings or camera screen
and back.

Buttons on the screen for navigation works as expected.
It can also go back to the screen it was previously on.

As a user, | want to be able
to take a picture inside the
app and view it.

Take a picture of a document given a screen where a user
can take it. When the picture is taken, then the user can
view it and delete it if the user doesn’t like it.

As a user, | want to be able
to upload pictures taken.

Upload a picture given a picture and a user clicking
upload. When a user wants to upload a picture, then we
want to store it in a filesystem and store its metadata in a
database.

As a user, | want to be able
to log in to the app.

Log in to the app. Given a login screen and a user giving
username and password. On button click, user is logged
in and routed to another page.

As a company, | want to be
able to match
referenceable invoices so |
can save time.

Many documents in the database. Given many invoices.
When the picture is uploaded, the backend will handle
matching the data within the picture to other data in the
database.

As a user, | want to be
notified whether the
picture is matched or not.

Prompt me to retake picture with tips on better picture
e.g. better lighting, angle it perpendicular to the invoice.

Picture is of good quality but there was no match -
“contact supervisor”?

Otherwise, display “Match approved” screen.

As a user, | want all
participating parties to be
notified of the document
match.

After a ‘document match’ event in the app, participating
parties associated with the user will receive an e-mail
notification with a timestamp and location.

8. | Asacompany, | want to be | Company can login to the app and on the ‘invite’ page,
able to invite users to join can fill out a form (e-mail address?) to grant
my network. authentication to a user signed up under that e-mail

address.

9. |[Asauser, | wantto be able | The application successfully uploads an image/pdf/file
to select between PDF and | from the camera/file system to AWS S3 bucket.
camera upload options for
images.

10. | As a buyer, | want to be Given a screen that prompts the user to enter in the
able to select my sellers. seller, the app will make a GET request for authenticating

permission.

11. | As aseller, | want to be able | A page in the app will show a list of buyers that the user
to view my buyers can navigate through easily.

(multiple).

12. | As a developer, | want to be | The OCR pipeline should parse the waybill number,
able to parse data from invoice number(s), and any other relevant information
uploaded documents. from the documents uploaded.

13 | As a developer, | want the The OCR pipeline is activated as soon as a new image is
OCR pipeline to activate uploaded
when there’s a new entry in
the AWS database

14. | As a user, | want to be able | After parsing the uploaded image, the OCR pipeline
to retrieve my documents’ | should send the parsed data back to the user. The user
parsed data from the OCR should confirm whether or not the data is correct.
pipeline.

15. | As a developer, | want to be | When any unit testing for the data layer occurs, a
able unit test our data reusable setup should be used to set up the testing
access objects and environment.
mappers.

16. | As a developer, | want to be | Given endpoints, a user should be able to send HTTP
able to hit the backend requests and receive responses.
endpoints with HTTP
requests.

17 | As a developer, | want to be | Call a method which retrieves data from the database.

able to easily map data

After retrieving data from the database, the data is place

from the database back to
Java.

18. | As a developer, | want to be | After the APl endpoint is hit with a POST request. Given
able to store image the post request, a java object should be created
metadata in Java. containing the relevant data.

19. | As a developer, | want to be | After relevant data is parsed from the document, a java
able to store parsed object should be created containing the parsed data. For
document data in a Java example, it should contain waybill, invoice#, and carrier.
object.

20. | As a developer, | want to be | After a SQL query has been executed and the data has
able to map data stored in been returned, the data should be mapped into a java
Java classes to the object.
database.

21. [As a developer, | want to be | For any data stored in a Image or Document class, there

able to abstract data into
different entities.

is a related table which stores the data in the database

Sequence Diagram

DATABASE
-
| I I |
—— | | [
uploadimage() l I [
i ! —— [image upload to AWS S3] | |
| |
l |
[response] I |
' |
[Image Metadata sent]
parselmage()
JSON Response [Parsed Response]
! |
| |
[|
getMatchingDocuments() | |
I I
=l |
[Document Search Parameters]
[Matching Documents]
JSON Response

Appendix

Purchase Order (PO) - Document issued by the seller to the buyer that indicates types,
guantities, and prices for purchased products/services

Sales Order (SO) - Document generated when a buyer purchases a product/service to confirm
the purchase order details

Sales Invoice - A bill sent to the customer after a sale requesting for payment

Shipping invoice - Document that accompanies the sold goods when shipped. Lists price,
quantity, and quality of goods and can also include PO and/or SO identifiers

Enterprise Resource Planner (ERP) - An ERP management information system integrates areas
such as planning, purchasing, inventory, sales, marketing, finance and human resources.
Tesseract - Library used to perform OCR. Comes with packages for many languages but we will
only be using english

OCR - Object Character Recognition - Process of recognizing characters in a given image

React Native - Framework that allows users to create universal mobile apps using Javascript
POJO (Plain Old Java Object) - Java object which can compiled under the jdk without any
extensions

Continuous Integration - Process of frequently merging in developer work into a shared
mainline

Continuous Deployment - Series of processes which allow code to be quickly and safely be
deployed to production

AWS S3 - Amazon S3 has a simple web services interface that you can use to store and retrieve
any amount of data

AWS RDS - Amazon RDS makes it easy to set up, operate, and scale a relational database in the
cloud

Docker - an application build and deployment tool which allows code to be packaged and
deployed in containers.

Jenkins - Server which helps automate the CI/CD pipeline.

Technologies Employed

Communications and Work Tools - JIRA, BitBucket, Slack
Document Parsing and OCR - Tesseract

Cloud Storage Tools - AWS S3, AWS RDS

Backend Development - Java

Mobile Development - React Native

Cl/CD - Docker, Jenkins

