

Team Name: Worthday

Jordan Ang (lead) - jordanangof18@gmail.com
Alan Tran (scribe) - alanthetran@gmail.com
Arthur Pan - arthurpan24@gmail.com
James Yang - jjyang@umail.ucsb.edu
Nathan Vandervoort - vandervoortn@gmail.com

Project: UniD
UCSB CS Capstone 2017-18 Product Requirements Document

Product Introduction
Mobile app that incorporates and extends the functionality of the UCSB
access card using the Workday Student cloud infrastructure in a

convenient platform.

Problem

Students sometimes are forgetful or clumsy and drop their access cards.

As a result, the students unable to make purchases using their student ID
or swipe into the dining commons without having to manually confirm

their identification. The process of manually confirming their
identification is slow and creates traffic. Another issue with physical

cards is that over time the image gets worn out or the magnetic strip is
unable to be read by the card swiper. This also presents an issue of

identification because the administrator can not confirm that the user is

the cardholder.

Solution

UniD, a mobile student identification application, plans to digitize student identification cards using QR
codes. Using a mobile solution prevents students from having to carry a card around. Everything can be

accessed through the mobile device. Also, other people can not use the owner’s QR code since a picture

of the owner will appear when the code is scanned.

2

Technical Advancements and Innovation
Web Technologies

Previous web frameworks such as LAMP (Linux, Apache, mySQL, PHP/Python) are outdated in the
modern era. They take too much times to set up and manage, especially when handling hundreds of

thousands requests. Consequently our web framework will use the MERN stack (Mongo, Express.js,

ReactJS, Node.js), substituting MongoDB and Express with DynamoDB and AWS Lambda, respectively.
The best part of the MERN stack is that it’s flexible, meaning we can still incorporate benefits of LAMP

in our stack. Moreover, a major benefit of using the MERN stack is the uniformity in language:
everything is in JavaScript/Java and passed on through JSON. LAMP requires the use of Linux or a Linux

VM, and knowledge of three different languages.

Use of noSQL database and the AWS server allows us to let Amazon manage our server and ensure the

quick scalability of our product. The best part is that it’s still scalable with LAMP, meaning that if we do
need a relational database, we can easily add it onto AWS ES2.

Student data is very valuable, and with our finished product we will be able to use this currently ignored
information to its fullest extent. Not only will students benefit in knowing when areas are busy and where

most of their peers are, administrators will have the benefit of added security at events through
degradation-free authentication. For example, if someone’s access card got stolen there is no way for the

victim to recover such a key or get rid of it from the system themselves. He or she would have to notify
the school which would take days to take effect. With QR codes and the web application we can simply

delete the QR code from their account and instantly replace it, eliminating a prior vulnerability to the
student body.

Android technology enables everyone with a smartphone to be able to have the added features that comes
with the UniD account. With access cards, one would still need to use card readers to check ID’s, but now

any Android device can accomplish the same task instantly. This is especially convenient because
Android smartphones are very common and affordable.

3

Goals and Requirements
Mobile Application (for administrators)
❖ Mobile (Android) application that administrators log into using Workday-authorized credentials

❖ An event or facility (known collectively as “authorizations”) can then be selected
❖ The following screen will scan QR codes representing students’ identifying codes

➢ Upon successful scan, the activity will authenticate the student against Workday’s
Student database

➢ Upon successful authentication, the student’s and authorization’s information will be sent

to our database for monitoring:
■ Who has already entered an event

■ Traffic at facilities
■ Number of credits left in the case of a student entering a dining commons

❖ Stretch goal: mobile app has option to create community service authorization entries
➢ Allows event supervisor to quickly validate community hours for large numbers of

volunteers

Web Application
❖ Student and administrator login/creation
❖ Students can view:

➢ Their unique QR code
■ Apple Wallet integration

■ mobile-friendly display

➢ Dining commons credit balance
➢ Traffic and trends at facilities

➢ Upcoming events and popularity of current events
❖ Administrators can create authorizations depending on clearance level

❖ Students must have valid UCSB email
❖ Administrators must valid preselected email (high-level admins can add these emails)

Backend Custom Database
❖ Custom database with information regarding authorizations related student activity

❖ Accessible by mobile and web applications

4

Product Structure

Our product will be broken up into 3 main parts: a mobile front end, a web app front end, and a backend

database storing information about students and their check-in data.

The mobile front end will be targeted towards administrators checking in students to events or dining

commons, and will be built with the Android SDK. The Android mobile application will also be using the
Varvet QR Scanner library in order to handle check-ins. This app is never intended to be used on the

student side, and will thus require a login from an administrator.

The web app front end, which is primarily targeted to be a mobile web application, will be built using
React and hosted through Heroku. This web application will be a platform for students to generate their

QR codes and view their check-in data at different events. This web application will also be a platform for

administrators to view the events they have hosted. This app will also require a signin, as the web
application contains private data for both students and administrators.

We will be using AWS Lambda to connect the mobile and web front ends together with our backend
database. Both our mobile and web applications will hit custom API endpoints we design on Lambda to

fetch information from our database, which will be utilizing DynamoDB. We chose to use Lambda and

5

DynamoDB, as they are both hosted through Amazon Web Services. Our backend, specifically, will

store any data relating to event data and student check-ins, but not authentication.

We will be using the Workday Student API to handle authentication of the students, using Workday’s

OAuth 2 technology. Workday’s OAuth 2 API allows us to quickly check whether students are who they
say they are when they attempt to check in. We will also be using Workday Student API to generate

student objects. This is important, as we will be testing our entire model through a Workday database of
students.

This structure is visualized at the beginning of this section.

Assumptions
❖ Every student has access to the internet and can retrieve their QR code off the cloud database
❖ Administrators have access to the internet and therefore can access the cloud database so they can

add, remove, or change student’s profiles.

❖ Administrators have a mobile phone or QR code scanner to verify student QR codes

6

User Stories

For Administrators

❖ As an administrator, I can view data of student activity so that I can have a better understanding
of how the student body functions.

❖ As a high level admin, I can create facility entries so that check-in staff can use them to quickly
and securely validate people.

❖ As a mid-level admin I can create event entries so that check-in staff can use them and ensure

authenticity of students entering.
❖ As a low-level admin, I can check students into facilities and events so that UniD can accurately

analyze data and the school can ensure campus wide security.

For Students

❖ As a student, I can view how many swipes I have left at the dining commons
❖ As a student, I can view the menu at each of the dining commons.
❖ As a student, I can check into school events/facilities.

❖ As a student, I can login to the application so that I can retrieve my QR code
❖ As a student, I can use UniD as a replacement for my physical access card so that I can bring one

less thing around with me.

7

Code Samples
Android Scanner Application

// Shows identification information about student who was scanned
private fun showStudentId(studentIdPicResId: Int, studentIdName: String, studentIdPerm: Int) {
 student_id_pic.setImageResource(studentIdPicResId)
 student_id_info.text = "$studentIdName\n${studentIdPerm.permNumFormat()}"
 student_id_linear_layout.visibility = View.VISIBLE
 student_id_linear_layout.postDelayed({
 student_id_linear_layout.visibility = View.GONE
 }, 4000)
}

// Starts scanning activity for selected event
holder.view.setOnClickListener {
 val intent = Intent(context, BarcodeCaptureActivity::class.java)
 intent.putExtra(context.getString(R.string.EVENT_INDEX), events[position].eventId)
 context.startActivity(intent)
}

Web Application - Login
 <!doctype html>
<html>
<head>
 <title>UniD Login</title>
 <meta charset="utf-8">
 <link type="text/css" rel="stylesheet" href="../css/login.css">
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
 <script src="../javascript/login.js"></script>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
</head>
<body>
 <form name="login">
 <div id="login_container">

 <label id="username-label">
 <input type="text"/>

 </label>
 <label id="password-label">
 <input type="password" autocomplete="false"/>

 </label>
 <input type="button" value="LOGIN" id="button"/>
 </div>
 </form>
 Forgot your password?
</body>
</html>

8

Appendix
Technologies
❖ Android Studio and SDK

➢ Mostly Kotlin with some borrowed Java code
➢ Google Vision API

❖ DynamoDB for custom database
➢ AWS Lambda for communication with database

❖ Workday Student API for student and administrator information

➢ OAuth 2 for authentication
❖ React for web application framework

❖ AWS Beanstalk/heroku for web application host
❖ Github for version control

