Virtual Reality Telemedicine Platform

Yuanqi Li¹, Jinfu Zhu¹, Shouzhi Wan¹, Kenneth Chan¹, Ole Eichhorn², Helen Hawkins², Nate Pincus³, Marco Pinter³, Jazarie Thatch³, Steve Bako¹, Chandra Krintz¹, Christopher Kruegel¹
¹University of California Santa Barbara, ²InTouch Health

Hi, developers. We are **frustrated** with displays not showing all the information we need.

Why not use more monitors? They are **too small**. It is cumbersome to switch back and forth between screens.

Let’s use **virtual reality**! It will give you more space to display your charts and graphs and to work with your applications.

Virtual reality can provide **simple and intuitive** interaction with hand gestures, allowing you to be more **productive**.

By applying Virtual Reality We can provide doctors with a more productive & accessible interaction with their applications.

Design Principle I – Spaces

We have developed three spaces for different purposes.
- In the main **working space**, you interact with all your applications.
- In the **side space**, you have access to widgets.
- In the fixed **eye space** you can monitor important information.

Design Principle II – Interaction

Good interaction experience boosts productivity.
- **Intuitive and simple hand gestures**: Push to minimize, pull to reopen.
- **Controllers and physical buttons**: More options and allows precise actions. Bring up the menu by pressing a button.

Design Principle III – Extensibility

Our project is a platform for incorporating **VR native applications, Windows- or web-based applications** in one VR setting. With our API, traditional apps can also be extended to support more VR features. e.g., creating a 3D model from a traditional Windows app.

Innovations

- **Three spaces** make use of VR to provide more space for users.
- **Gestures** allow users to efficiently interact with different kinds of data.
- **Very portable and extensible**. More apps can be easily migrated. It can also be used for non-medical purposes.

Future developments

- Graphics can be improved for a better user experience.
- More medical-specific native applications can be implemented.
- Rendering 3D models for MRI/CT scans can be added.

Select VR Native Apps

- Real time video streaming
- Medical encounter notes
- MRI scan image viewer
- Electronic medical record visualization
- Vitals monitor
- Widgets

Tools, Libraries, and Platforms

- WebRTC
- VRTK
- Chromium
- Firebase
- Oculus

Figure I

- An overview of the working space (right) and side space (left).

Figure II

- The user is using a pull gesture to reopen all minimized apps in working space.
- The user is grabbing and resizing the Intake Form app.
- There is a hand menu to open apps.

Figure III

- Some apps are implemented in Unity to maximize their performance and fully utilize VR features.
- Familiar Windows apps, such as the explorer, can run in the interface.
- Web-based apps utilize HTML and CSS features to simplify and speed up app implementation process.

Using WebRTC to give you more space to display hand gestures, allowing you to interact with different scan images with a mouse on a flat screen.

Let’s use virtual reality! It will give you more space to display your charts and graphs and to work with your applications.

Virtual reality can provide simple and intuitive interaction with hand gestures, allowing you to be more productive.

Why not use more monitors?

The data we deal with is also very complicated. It is difficult to interact with different scan images with a mouse on a flat screen.

Virtual reality can provide simple and intuitive interaction with hand gestures, allowing you to be more productive.