

Augmented Reality in Robotic Telepresence
Team cARe

Team members
Sabal Malhan sabalmalhan@gmail.com (Team Leader)
Ethan Wang ethanyuwang@gmail.com
Hanna Vigil hannavigil@gmail.com (Scribe)
Nate Pincus ntpincus@gmail.com
Dongyang Li donnie.ldyang@gmail.com

Introduction
Project Overview:

We will be implementing an interactive augmented reality interface for the RP-Vita robot.
Currently this robot provides a video feed, can be moved by dragging a direction arrow,
and the camera zoom can be manipulated. In order to expand upon the utility of the
robot, we will be using deep learning and image detection techniques to identify common
medical equipment and personnel and create context-sensitive actions for the identified
objects.

Specifics:

Sprint 1 - Research and Planning
● Studied deep Learning principles and TensorFlow
● Gathering relevant images for dataset
● Studied the Robot API - Unable to achieve in Sprint 1

Sprint 2 - Developing Prototype Components
● Selected InceptionV3 for classification DNN
● Sliding Window Classifier using OpenCV to do object detection
● “Where’s the Bear” approach to create large amounts of “fake” images
● Robot API - wrote tests for movement, zooming, centering on given points.

 Sprint 3 - Developing prototype
● Two modules, classifier (given image, provides bounding boxes) and fake robot

(and draws bounding boxes using info given by classifier)
● Dealing with only still images for now, and detection is limited to people

Target Release:
● Prototype: End of Fall Quarter (December 2016)
● Final: End of Spring Quarter (March 2017)

Team Objectives:
 Goals

1. Use the robot’s camera to identify objects of interest. This currently includes
monitors (vitals and X Ray), foley bags, hospital beds, and people. This will be
done through creating a neural network trained on dataset of images containing
these objects in hospital settings.

mailto:sabalmalhan@gmail.com
mailto:ethanyuwang@gmail.com
mailto:hannavigil@gmail.com
mailto:ntpincus@gmail.com
mailto:donnie.ldyang@gmail.com

2. We would must verify that the neural network is accurate (is it correctly tagging
objects), as accurate detection in a medical setting is crucial.

3. Use Robot API in conjunction with the neural network to detect these objects
from the video stream and draw bounding box around them

4. Context sensitive actions (currently zoom, center, and move towards) appear
when the highlighted objects are clicked

Non-goals

1. Context-sensitive actions upon doctors or other personnel. Actions such as
“follow the doctor” (have to handle multiple doctors) or “this is the cardiologist
Steve” **

2. Identifying name or position of people - not all doctors wear lab coats, not all
patients wear gowns. **

3. Handle or deliver the identified objects. We will not attempt to physically interact
with the detected objects. Our problem space is confined to the video stream.

4. Body temperature, weight and height detections. The robot does not currently
have the resources it needs for these actions. The company is looking into
thermal cameras for future models, but it is still out of scope for now.

**We may be able to achieve some form of these as stretch goals by constraining the domain
(require personnel to wear I.D.s or access the hospital D.B. of employees).

Background
InTouch already offers a working remote care service via video stream to its customers, but we
can expand upon the service by creating an augmented reality of the video stream. We will
implement the A.R. interface using object detection in order to allow doctors to more easily
access information and interact with the remote location. This will lead to an increase in the
efficiency and utility of remote care and contributes to the company's vision. In order to
implement an augmented reality interface that benefits the users of the product, we will need to
train a neural network, which we will accomplish with the help of Google’s TensorFlow.

Assumptions

● We are given a medical robot (the Vita) with consistent internet connectivity. We are not
responsible for a loss of wifi signal that would cause the “call” to drop.

● We are not responsible for the direct control of the robot’s movement: all commands will
be handled through at least one layer of api calls.

● We will write a robot application that runs directly on the Vita’s Windows subsystem, and
all object recognition on InTouch’s powerful desktop in order to ensure a minimal delay
between object recognition, and augmented reality overlay.

● InTouch will implement an “AR mode” in their current client software to allow our
classified/overlayed frame and click handling go through to the doctor.

System architecture and overview
Two possible endpoints (Vita Robot or a “fake” Robot PC which has the Robot API installed and
can simulate robot’s functions).

Within an endpoint, we will use our neural net in conjunction with Robot API and OpenCV to edit
images (recognize objects, highlight them, U.I. buttons for context sensitive actions).

User Interaction
Our user interaction is limited to clicks upon objects and being able to display context sensitive
actions. Here is a workflow for the prototype, where we augmented a Harry Potter trailer.
The trailer has been broken into frames and bounding box info is provided by the classifier. After
loading up robot controller app, you will see first frame.

Now the user may choose to click on the bounding box and produce a set of buttons. For the
prototype these actions will do nothing.

This process will continue, with each new frame image being classified and displayed. In the
final iteration, we will extend our classification to a continuous video stream rather than still
images, allowing live object detection. The action buttons will also be live.

Requirements

User stories
As a developer, I can create a training set for detecting faces only.
Acceptance criteria: Collected images of 200+ human faces
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/master/prototype/ClassificationModule/Neur
alNetwork/trainingSet

As a developer, I can create a training set from a set of base images and object images so that
I can synthesize a large sample of relevant data (W.T.B.).
Acceptance criteria: Given a set of base images and object images, W.T.B. processing yields a
set of training images where the object images are overlaid onto the base images
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/master/createTrainingSet
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/master/resources

As a developer, I can use a set of images to retrain the inception V3 neural net so that it can
classify objects of medical interest.
Acceptance criteria: There is a sufficiently large set of training and testing images (use testing
program on training directory) and verify that retraining provides 90% plus accuracy (program is
written to print this when training is complete, currently 94% for faces only)
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/samples/inceptionv3/retrain.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/prototype/ClassificationModule/Traini
ngDirectoryTests.py

As a developer, I can load retrained neural network to classify new images
Acceptance criteria: Output graph can be loaded, and given an input image, classification label
+ confidence rating is printed
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/inceptionv3/testingit.py

As a developer, I can take a relative position in an image and draw a bounding box about an
object.
Acceptance criteria: Check that bounding box coordinates are given, and do not exceed image
size. Use OpenCV to draw bounding box and display output for testing accuracy.
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/prototype/ClassificationModule/draw
Box.py

As a developer, I can use robot api to snap images and save into a shared directory
Acceptance criteria: Still images from “robot” stored in a shared folder for classification.
Full Robot Module code
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/RobotDev/prototype/RobotModule

As a developer, I can detect objects using sliding window classification.

https://github.ucsb.edu/nathaniel-pincus/cARe/tree/master/prototype/ClassificationModule/NeuralNetwork/trainingSet
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/master/prototype/ClassificationModule/NeuralNetwork/trainingSet
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/master/createTrainingSet
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/master/resources
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/samples/inceptionv3/retrain.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/prototype/ClassificationModule/TrainingDirectoryTests.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/prototype/ClassificationModule/TrainingDirectoryTests.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/inceptionv3/testingit.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/prototype/ClassificationModule/drawBox.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/prototype/ClassificationModule/drawBox.py
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/RobotDev/prototype/RobotModule

Acceptance criteria: Given an image, take subsets (window) to produce localized classification
and approximate detection.
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/objectDetection/slidingWind
owClassifier.py

As a developer, I can read images from shared directory into classification module
Acceptance criteria: Images are read into a stack for classification and tagged to ensure they
are not read multiple times.
Full classification module code:
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/prototype/ClassificationModule/cl
assificationModule.py

As a developer, I can optimize sliding window by constraining the window size based on input
image constraints (we will only have faces, where the face is close enough to be about ⅔ of
image - bigger object is easier to detect)
Acceptance criteria: Sliding window is run on a 640 x 480 size image and bounding box is
produced around the face. Multiple boxes, or oversized/undersized boxes are not produced.

As a developer, I can write bounding box info from sliding window classifier into a text file.
Acceptance criteria: Bounding box info (classification label and coordinates) stored using JSON
format in a shared directory for robot module.
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/prototype/ClassificationModule/boxe
sToJson.py

As a developer, I can read bounding box info into a local data structure for click handling and
for drawing boxes on output images
Acceptance criteria: JSON files read from shared directory and used to update data structure
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/RobotDev/prototype/RobotModule/parseJSO
NFunc

As a developer, I can implement a thread-safe data structure that stores labels and bounding
boxes
Acceptance criteria: D.S. is updated on each new file read and can be searched when a button
click is received or the output image is about to draw new bounding boxes
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/RobotDev/prototype/RobotModule/bounding
BoxCollectionFile

As a developer, I can implement a “zoom” feature, that performs a zoom of a given a zoom
amount and coordinates.
Acceptance criteria: Simply print a message that shows we’ve called zoom on a given object
(API cannot actually zoom on a fake endpoint, real vita will zoom in on object)
Code for robot actions

https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/objectDetection/slidingWindowClassifier.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/objectDetection/slidingWindowClassifier.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/prototype/ClassificationModule/classificationModule.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/prototype/ClassificationModule/classificationModule.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/prototype/ClassificationModule/boxesToJson.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/prototype/ClassificationModule/boxesToJson.py
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/RobotDev/prototype/RobotModule/parseJSONFunc
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/RobotDev/prototype/RobotModule/parseJSONFunc
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/RobotDev/prototype/RobotModule/boundingBoxCollectionFile
https://github.ucsb.edu/nathaniel-pincus/cARe/tree/RobotDev/prototype/RobotModule/boundingBoxCollectionFile

https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/prototype/RobotModule/RobotActi
ons.pde

As a developer, I can implement a “move” feature, that moves a specified amount in a
specified direction.
Acceptance criteria: Simply print a message that shows we’ve called move on a given object
(real vita will move towards specified object in 1m chunks until it senses something)

As a developer, I can implement a “center” feature, that moves the camera to a specified
bounding box.
Acceptance criteria: Simply print a message that shows us we’ve called center on a given set of
coordinates (real vita will tilt towards)

As a user, I can click the bounding box about an object of interest to see a menu of buttons
linked to context sensitive options so that I can interact with the object.
Acceptance criteria: Clicking within a bounding box produces action buttons
All GUI code
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/prototype/RobotModule/GUI_Con
trol.pde

As a user, I can click on the “zoom” button so that I can see the object of interest more clearly.
Acceptance criteria: When zoom button is pressed, zoom in on specified object (prototype will
do nothing, only console message)

As a user, I can click on a “move” button that when called, triggers the robot to move towards
an object of interest.
Acceptance criteria: When move button is pressed, move towards specified object (prototype
will do nothing, only console message)

As a user, I can click on a “center” button that when called triggers the robot to center a given
point so that I can look at an object straight on.
Acceptance criteria: When center button is pressed, center in on specified object (prototype will
do nothing, only console message)

As a user, I can click on a “get information” button next to a person that when called displays a
person’s name and job title so that I know who I am talking to.
Acceptance criteria: When button is pressed, if the face is within database, results will be
displayed (not implemented for prototype)

https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/prototype/RobotModule/RobotActions.pde
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/prototype/RobotModule/RobotActions.pde
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/prototype/RobotModule/GUI_Control.pde
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/prototype/RobotModule/GUI_Control.pde

Use Cases:

Use Case: Create Data set

Actors Computer CPU

Precondition Have a base set of images (just backgrounds) and object images with white
background

Flow of Events 1) Changes object images to have a transparent background and crops
them to the appropriate size.
2) The computer, using openCV will then place the new object images on
top of the base images in different positions
3) Adjusts resolution and brightness of the image to resemble the photos
that Vita will have access to
4) Stores the new data set in a directory

Postcondition A set of 1,000 (initially, will expand for final version) testing images is
returned with different objects that will need to be classified

Github
commits

https://github.ucsb.edu/nathaniel-pincus/cARe/commit/6575b1a111e8daeb0
caab460c9954c079995398f

Use Case: Train neural net

Actors Computer CPU, Tensorflow (inception V3)

Precondition Have adequately large training data set and test data set

Flow of Events Basic Path:
1) Inception V3 model is retrained using training set
 $ retrain.py --image_dir <images_directory>
2) This will store our retrained neural net inside a specified directory
3) Use test set to test and measure the accuracy of the of the retrained
model
4) If accuracy is too low -> evaluate if it was due to configuration
parameters or small dataset.

Postcondition Given a test set, neural net can achieve a 60% accuracy (want 95%
ultimately) in the classification process.

Github
commits

https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/samples/ince
ptionv3/retrain.py

https://github.ucsb.edu/nathaniel-pincus/cARe/commit/6575b1a111e8daeb0caab460c9954c079995398f
https://github.ucsb.edu/nathaniel-pincus/cARe/commit/6575b1a111e8daeb0caab460c9954c079995398f
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/samples/inceptionv3/retrain.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/RobotDev/samples/inceptionv3/retrain.py

Use Case: Recognize and highlight objects (sliding window classifier)

Actors Vita, Robot API, openCV

Precondition Have a trained neural net to identify objects under different conditions and
backgrounds.

Flow of Events 1) Neural network is given an image
2) Image slice is classified
3) If objects of interest are detected, save that window
4) All windows and labels are written into text file

Postcondition Objects of interest are recognized and their bounding boxes are saved

Github
commits

https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/objectD
etection/slidingWindowClassifier.py

Use Case: Create context sensitive actions menu

Actors User, openCV

Precondition Bounding boxes have been drawn, object classified

Flow of Events 1) User clicks within a bounding box
2) Draw a gui - dropdown of context sensitive buttons - zoom, move, center
3) If object is a person, also include a “get information” button

Postcondition Context sensitive actions menu created

Github
commits

https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/262353a4b7
0af86c14f93ae2a43cf72004682195
https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/0eb046e52c
ae7977e360b3201233f3a2b3c11d98

https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/objectDetection/slidingWindowClassifier.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/objectDetection/slidingWindowClassifier.py
https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/262353a4b70af86c14f93ae2a43cf72004682195
https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/262353a4b70af86c14f93ae2a43cf72004682195
https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/0eb046e52cae7977e360b3201233f3a2b3c11d98
https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/0eb046e52cae7977e360b3201233f3a2b3c11d98

Use Case: Select action

Actors User, Vita

Precondition Object is selected, action menu is displayed

Flow of Events Basic path: 1) User presses one of the actions
2) Menu is removed from screen
3) Vita is notified which action was selected and for which object and
initiates that use case
Alternative path: 1) User does not click on any of the displayed actions and
presses somewhere else on the screen
2) Menu is removed

Postcondition Action selected and menu hidden OR no action selected, menu hidden

Github
commits

https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/262353a4b7
0af86c14f93ae2a43cf72004682195

Use Case: Zoom in on identified object

Actors Vita

Precondition Objects are identified and highlighted with a bounding box, zoom option has
been selected from dropdown menu, the camera is not already at max
zoom

Flow of Events 1) System takes bounding box coordinates and uses those to determine
how much zoom is appropriate (if relative
2) Robot API is used to tell Vita to zoom in on coordinates given

Postcondition Robot has now zoomed in on the object

Github
commits

https://github.ucsb.edu/nathaniel-pincus/cARe/commit/bd628af8eb59d01c7
5af979e42529c5c4c5d4446

https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/262353a4b70af86c14f93ae2a43cf72004682195
https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/262353a4b70af86c14f93ae2a43cf72004682195
https://github.ucsb.edu/nathaniel-pincus/cARe/commit/bd628af8eb59d01c75af979e42529c5c4c5d4446
https://github.ucsb.edu/nathaniel-pincus/cARe/commit/bd628af8eb59d01c75af979e42529c5c4c5d4446

Use Case: Recognize faces

Actors people, Vita, openCV

Precondition There are people around in the room and being highlighted with bounding
boxes. Option to get more information selected.

Flow of Events 1) OpenCV runs a facial recognition inside the bounding box.
2) If there's matching face in database, an information tag containing name
and job title shows on the bounding box (start with a fake database of our
own faces)
3) If no matching is found, an unknown tag is displayed on the bounding box

Postcondition Name and job title shows on the bounding box

Github
commits

https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/objectD
etection/slidingWindowClassifier.py

Use Case: Draw bounding box

Actors Vita, OpenCV

Precondition Video stream has started, objects have been detected and the bounding
box coordinates have been saved to a text file and stored in a data structure

Flow of Events 1) A check is done for bounding box info in data structure
2) The provided info is used to give constraints for bounding box
3) OpenCV draws box on corresponding image
5) New image is displayed

Postcondition A new image with bounding box drawn on is displayed

Github
commits

https://github.ucsb.edu/nathaniel-pincus/cARe/commit/1e53aa16341cd7f7e
e8855eb0e4f978d5dcf02e6

https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/objectDetection/slidingWindowClassifier.py
https://github.ucsb.edu/nathaniel-pincus/cARe/blob/master/samples/objectDetection/slidingWindowClassifier.py
https://github.ucsb.edu/nathaniel-pincus/cARe/commit/1e53aa16341cd7f7ee8855eb0e4f978d5dcf02e6
https://github.ucsb.edu/nathaniel-pincus/cARe/commit/1e53aa16341cd7f7ee8855eb0e4f978d5dcf02e6

Use Case: Save frames periodically

Actors Vita, RobotAPI

Precondition Stream has been started

Flow of Events 1) A rate is specified
2) Vita takes image at specified rate
2) Image is saved to shared folder for classification

Postcondition An image has been saved to the shared folder

Github
commits

https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/512446552d
04dba0b85b3288a57aaa0b33208dd2

Use Case: Store bounding box info

Actors Vita

Precondition Bounding box info exists in a text file

Flow of Events 1) A check is done for bounding box info in a text file
2) The information for the picture is read and stored in a data structure
3) Folder cleanup is initiated
4) The newly filled structure is returned

Postcondition Data structure with all bounding boxes for a particular image is saved

Github
commits

https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/55b44586c3
122589e8633782d1afd022de468aca
https://github.ucsb.edu/nathaniel-pincus/cARe/commit/1e53aa16341cd7f7e
e8855eb0e4f978d5dcf02e6

https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/512446552d04dba0b85b3288a57aaa0b33208dd2
https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/512446552d04dba0b85b3288a57aaa0b33208dd2
https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/55b44586c3122589e8633782d1afd022de468aca
https://github.ucsb.edu/nathaniel-pincus/cARe/pull/20/commits/55b44586c3122589e8633782d1afd022de468aca
https://github.ucsb.edu/nathaniel-pincus/cARe/commit/1e53aa16341cd7f7ee8855eb0e4f978d5dcf02e6
https://github.ucsb.edu/nathaniel-pincus/cARe/commit/1e53aa16341cd7f7ee8855eb0e4f978d5dcf02e6

Use Case: Center object

Actors Vita

Precondition Objects are identified and highlighted with a bounding box, center option
has been selected from dropdown menu, the object is not already centered

Flow of Events 1) System takes bounding box coordinates and uses those to determine
how much the vita should turn its head
2) Robot API is used to tell Vita to rotate a specified angle

Postcondition The object is centered on the display

Github
commits

void doCenter(){
int midpoint = g_streamImageWidth;
float degrees = mouseX / midpoint;

 giveRequestToPipeAndWaitForReply("<ptz> <tilt>" + degrees + "<delta>
</ptz>");
 setStatusLine("");
}

System Models

Robot application sequencing diagram:

Robot application class diagram:

Sequencing Diagram for Classification Module

Class Diagram for Classification Module

Appendices:
● TensorFlow - Google’s machine learning platform
● Robot API - InTouch Proprietary Robot interaction software
● OpenCV - open source computer vision library
● W.T.B. - Academic article with a procedure of creating large datasets from base images

OpenCV - open source computer vision library

