

Voice Biometric Integration
Product Requirements Document, Version 1

October 28, 2016

Team Tres Commas

Members:
Jonathan Easterman, Sasha Shams,

Arda Ungun, Carson Holoien, Vince Nicoara

Mentors:
Mike Weaver, Colin Kelley, James Brown

Chandra Krintz, Ankita Singh

Introduction

PROBLEM

We want to bring authentication to the 21st century. Existing methods of automated user
authentication over telephony have many drawbacks; entering codes via touch-tone is
cumbersome and error-prone, existing robo-callers are unreliable and repetitive.

VISION

We will utilize modern voice biometrics to identify and authorize users in a seamless process.
No more having to remember years-old pins and passwords. No more having to share
private, sensitive information with strangers over the phone as you answer security
questions. Using our technology, an individual’s identity will be ascertained in the utterance
of a sentence.

Implementing voice authentication will improve convenience and user experience for
customers, while automation will be cheaper and more efficient for businesses.
Authenticating a user can be 100% autonomous, which will speed up the process for users
and cut down the amount of needed for call center employees.

COMPETITION

There are many APIs that offer a voice biometrics service via the Internet, but there is only
one company that offers a complete voice authentication service. Nuance offers voice
authentication as a costly and monolithic product . We plan to offer an open-source, 1

configurable product that will target smaller companies.

INNOVATION

Our solution is secure, lightweight, easy to deploy, and modular. We will offer improved
security by integrating automated voice authentication, and target small- to mid-level
customers through our lightweight architecture and ease of deployment. The plug-and-play
nature of our application allows other developers to leverage our product to the services that
suit their needs. We implement Microsoft’s voice authentication API, but future developers
can choose to replace that portion of our project with an improved or proprietary solution
instead.

1 We tried contacting Nuance about their product and potential support for developers and we have not
heard back from them yet.

Project Specifics

OBJECTIVES

Our project aims to add another layer of security to Invoca’s call systems by adding voice
authentication and shorten the amount of time spent by employees authenticating users.

BACKGROUND

In existing solutions, when users call to a make changes to one of their accounts, they must
verify their identity by answering a series of security questions. These security questions can
include things like their social security number and other personal questions. Going about
verification in this manner has a few issues that can be improved upon. First of all, it can take
a long time – maybe the user does not remember their specific account information (“What is
your favorite animal?”). Secondly, it is not 100% secure – if a nefarious character (or even the
individual on the other end of the call) got ahold of their personal information, they can
access the user’s account and wreak havoc. Our voice authentication vision seeks to
provide another layer of security as well as make the entire process quicker for the user and
ultimately improve efficiency for call center administrators.

ASSUMPTIONS

● Users desire faster authentication when accessing their account over the
phone

● Users desire to have more security when accessing their account (2FA)
● Account administrators desire to have users with more secure accounts, so

that they do not have to deal with the issues of compromised accounts
● Account administrators desire to have call centers with improved efficiency as

time is wasted authenticating users manually
● Users’ voices may fluctuate short term and change over time, so alternative

methods of authentication should be in place to enable users to update their
voice profiles

● Vulnerabilities in voice authentication technology exist, therefore there must be
preventative measures in place such as randomization of voiceprint phrases

System Architecture Overview

HIGH LEVEL DIAGRAM

Illustrated below is our preliminary system architecture. Each piece handles specific
responsibilities, which are outlined. The Freeswitch Module, Ruby Main Controller, Voiceprint
Controller, and User Account Database are all within their own docker containers and
communicate over sockets.

Freeswitch Module:

This module handles all of the protocols to initiate a phone call and conversate. The
freeswitch module monitors call events such as calling, answering, hanging up, and entering
digits. These events are transferred to the Ruby Main Controller in the form of Call Event
objects.

Ruby Main Controller:

This module contains the main “brains” of the whole system. It facilitates the IVR (Interactive
Voice Response) tree. In our system, the IVR tree maintains the current state of the caller and
transfers them accordingly based on their user input (Ex: “Prompt: Press 1 for Directions, 2

for operator”). Based on the current state of the caller, the ruby controller interfaces with the
voiceprint controller to retrieve user info and issue requests for authentication.

Voiceprint Controller:

The voiceprint controller handles the logistics behind creating and retrieving users and their
voiceprints in the system. When the main controller issues a request to create a voiceprint,
the controller interfaces with the API to get a unique identifier for the new user. The
voiceprint controller then inserts the new user account into the database with attributes: First
Name, Last Name, Phone Number, and Verification Profile UUID. When the controller
receives a verify request, it will retrieve the voiceprint UUID from the database as a
parameter for the API request to verify. The response is returned to the ruby controller and
ultimately presented to the agent.

User Account Database:

Due to privacy reasons, Microsoft Speaker Recognition API does not store personal info with
a user’s voiceprint and simply creates a verification profile ID. Therefore, we must maintain
our own database of that a user’s name, phone number, and verification profile ID for later
retrieval.

Voice Authentication API:

After much analysis of the voice authentication APIs (Voice_API_Analysis) we decided on
Microsoft Cognitive Services - Speaker Recognition API. All of the voice APIs shared similar
limitations, only specific phrases provided by the API could be spoken by the user to be
verified. These phrases bring out certain characteristic patterns that are used to create a
unique user’s voiceprint. The API will be used to handle all speech processing.

http://goo.gl/JiKQfl

USER EXPERIENCE DIAGRAM

In addition to the high level system diagram, we have outlined the general pipeline of events
for the Ruby Main Controller. In the diagram below, outputs are indicated by quotes and
often correspond with a pre-recorded sound file to be played. User inputs/Agent transfers
are indicated by transitions between states. This diagram helps illustrate our user stories.

Source: Prototype of User Experience Diagram

https://github.com/sashashams/InvocaCapstone/blob/PRDV1_Repo_old/user_story_3/UserExperienceDiagram.png

Requirements

PRIORITIZED USER STORIES

1. As a customer, I can call the call center so that I can take care of business.

Deliverable User calls a number
FreeSwitch picks up call
User is prompted with welcome message

Prototype GitHub Ruby Controller Interface with Freeswitch

Tests ● Simulate a call with softphone
● Check that freeswitch answers and parks the call
● Hang up call using freeswitch

2. As a customer, I can call the call center and create a voice print so that I can use voice
authentication in the future

Deliverable Ruby code to call Microsoft Voice API

Prototype Ruby code to handle Create Voiceprint API requests

Tests: (manual) ● POST request to API
● Ensure response code is valid
● GET request to API with response id
● Ensure profile exists

Deliverable Code that creates audio recordings from call

Tests: ● Create/record audio file
● Delete audio file

https://github.com/sashashams/InvocaCapstone/tree/PRDV1_Repo_old/user_story_1
https://github.com/sashashams/InvocaCapstone/tree/PRDV1_Repo_old/user_story_2_4

3. As a customer, I can call the call center and be authenticated using my voice print before
talking to an agent so that I can:

● Authenticate faster and painlessly
● Add another level of security
● Keep my details private

Nonfunctional
Requirement

Authentication response in under a second

Tests: ● Time GET request to Microsoft API
● Ensure response comes back < 1 second

Nonfunctional
Requirement

90% of the time, it works 100% of the time

Tests: ● Make 10 verification requests
● Ensure 9 responses come back with ‘High’ certainty response

Deliverable User is prompted to say voiceprint passphrase.
User says passphrase.
User is told asked whether they would like to submit or re-record
passphrase.
User submits recording.
System tells user whether they were authenticated
User gets transferred to agent

Prototype: FSM diagram describing call transitions and pipeline.
Prototype of User Experience Diagram

Tests: ● Verify that audio file was created
● Verify API request was sent out
● Verify API authentication response
● User/call has state ‘authenticated’ change from ‘true’ to ‘false’

https://github.com/sashashams/InvocaCapstone/tree/PRDV1_Repo_old/user_story_3

4. As a customer support agent, I can know whether a customer was properly
authenticated when their call is transferred to me.

Deliverable Ruby code that plays a recording through FreeSWITCH

Tests: ● Verify the audio file was sent to the Voice API.
● Confirm there is feedback from voice API

Prototype Ruby code to handle Verify Voiceprint API requests

5. As a call center admin, I can spin up the docker environment in order to set up the
product.

Deliverable: ● Docker-Compose file
● Docker files
● Docker images hosted on Docker Hub

Prototype GitHub Docker Files and Freeswitch

Tests (manual) ● Try setting up the system on a fresh machine

6. As a customer, I can bypass the authentication system so that I can authenticate with a
customer support agent.

Deliverable Ruby code that redirects the user from the IVR to the Agent through
freeswitch.

Tests: ● Verify the call remains connected during transition
● Verify that the agent is notified that the user will be connecting to

them shortly

7. As a customer, I can update my voiceprint so that I can use a more recent voiceprint

https://github.com/sashashams/InvocaCapstone/tree/PRDV1_Repo_old/user_story_2_4
https://github.com/sashashams/InvocaCapstone/tree/PRDV1_Repo_old/user_story_5/docker_files

Deliverable: IVR system that prompts the user with a new passphrase, records the
new audio file, plays it back, and asks if they would like to: save, redo
or choose another passphrase.

Tests (manual) ● Verify that call is sent to voiceprint state of IVR.
● Verify the new audio file has been saved.
● Verify user’s input is stored and transferred to correct stage.

8. As a customer, I can delete my voiceprint so that I can remove my voice data from the
system.

Deliverable: ● IVR states for this?
● Ruby code

Tests (manual) ● Verify API request was sent out
● Verify API authentication response
● Verify voiceprint is gone

9. As a customer support agent, I can delete a user’s voiceprint so that they remove their
data from the system.

Deliverable: ● IVR states for this?
● Ruby code

Tests (manual) ● Verify API request was sent out
● Verify API authentification response
● Verify voiceprint is gone

10. As a customer support agent, I transfer the customer to a specific stage of
authentication (such as create fingerprint, update fingerprint) so that I can help the customer
with their voice authentication

Deliverable: ● Ruby code

Tests (manual) ● Verify that call is sent to specific voiceprint state of IVR.

Appendix

TECHNOLOGIES EMPLOYED

Product

Docker Development platform for building, shipping and running
applications

Freeswitch Open source telephony server

Ruby Sinatra Lightweight web server used offer interface for call center agent

Librevox Ruby wrapper for mod_event_socket Freeswitch interface

Microsoft Speaker
Recognition API

Voice Authentication

SQLite3 User account database

Internal

Slack Team Communication

Github Source Version Control and code repository management.

Waffle.io Agile/Scrum Task Board

TravisCI Continuous Integration code testing

WHAT WE DON’T DO:

1. Conversational automated voice authentication

We will not authenticate users in the background based on a natural conversation. Users will
have to speak predetermined phrases in order for our solution to work. This is a result of the
limitations of the available voice authentication APIs.

2. Conversational manual voice authentication

We will not specify how a call center agent should authenticate a person in the case where
automated authentication fails. This is up to the particular business to determine if they
would like to use security questions, pins, password, etc.

