
Picosatellites & Our AeroCube Analog
Satellites are expensive ? for a full-size satellite, a 
single  deployment mission can cost up to 400 
million dollars.

There are now a number of smaller satellite sizes, 
all the way down to microsatellites between 1kg 
and 10kg or picosatellites under 1kg.  One 
standard for picosatellites is a CubeSat called the 
AeroCube.

For our project, Aerospace provided a NVIDIA 
Jetson TX1 running a Cortex A57 and a Maxwell 
architecture GPU with 256 CUDA cores capable 
of over 1 TeraFLOPs to act as our AeroCube 
analog.

Meet the Jetsons
Fiducial Markers
Fiducial Markers are objects used to estimate scale in 
an image because they are a known size  and shape 
(e.g., a ruler).  OpenCV's ArUco library produces  such 
markers with unique IDs encoded as bits, as seen to 
the right. Each marker can then be used to identify a 
side of an AeroCube in addition to  conveying 
information about the position and pose of the 
AeroCube.

How do we map marker information to AeroCube information?

By placing unique markers on each side of multiple AeroCubes, we can use the marker ID to 
determine the AeroCube's ID and face. Because we can identify the face, we just need to apply 
transformation matrices (rotation and translation) to determine the AeroCube center's 
position and relative pose from the markers ? if we have multiple markers for an AeroCube, 
we can simply average their calcalated centers.

Why represent pose as a quaternion?

Quaternions are 4-element vectors that are commonly used in aerospace to represent pose 
due to a couple of nice properties. They compactly represent rotation in 3D space (as 
opposed to a 3x3 rotation matrix). Additionally, multiplying two quaternions together to 
combine their rotations is faster than multiplying two rotation matrices together. 
Quaternions also avoid certain issues faced with other pose representations ? e.g., they avoid 
the issue of gimbal lock when using Euler Angles.

Image Processing to Models

The Problem
The primary strengths of picosatellites are dependent on precise 
formation f lying while completing a distributed task, such as simulated 
"large-aperture" interferometry to analyze the chemical signatures of 
planets thousands of light years away.

Existing solutions for understanding pose and position have strict limitations such as the 
presence of a known magnetic field, line of sight to the sun, or precision insufficient for 
close-range (under 1m) maneuvers. 

As though developing for an actual picosatellite, our system is constrained by limited energy 
resources and limited computation power. 

In addition, the lack of an actual picosatellite system required the encapsulation of modules  so that 
simple mixins could be applied to utilize the code in another system altogether. 

The Constraints
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