
Picosatellites & Our AeroCube Analog
Satellites are expensive ? for a full-size satellite, a
single deployment mission can cost up to 400
million dollars.

There are now a number of smaller satellite sizes,
all the way down to microsatellites between 1kg
and 10kg or picosatellites under 1kg. One
standard for picosatellites is a CubeSat called the
AeroCube.

For our project, Aerospace provided a NVIDIA
Jetson TX1 running a Cortex A57 and a Maxwell
architecture GPU with 256 CUDA cores capable
of over 1 TeraFLOPs to act as our AeroCube
analog.

Meet the Jetsons
Fiducial Markers
Fiducial Markers are objects used to estimate scale in
an image because they are a known size and shape
(e.g., a ruler). OpenCV's ArUco library produces such
markers with unique IDs encoded as bits, as seen to
the right. Each marker can then be used to identify a
side of an AeroCube in addition to conveying
information about the position and pose of the
AeroCube.

How do we map marker information to AeroCube information?

By placing unique markers on each side of multiple AeroCubes, we can use the marker ID to
determine the AeroCube's ID and face. Because we can identify the face, we just need to apply
transformation matrices (rotation and translation) to determine the AeroCube center's
position and relative pose from the markers ? if we have multiple markers for an AeroCube,
we can simply average their calcalated centers.

Why represent pose as a quaternion?

Quaternions are 4-element vectors that are commonly used in aerospace to represent pose
due to a couple of nice properties. They compactly represent rotation in 3D space (as
opposed to a 3x3 rotation matrix). Additionally, multiplying two quaternions together to
combine their rotations is faster than multiplying two rotation matrices together.
Quaternions also avoid certain issues faced with other pose representations ? e.g., they avoid
the issue of gimbal lock when using Euler Angles.

Image Processing to Models

The Problem
The primary strengths of picosatellites are dependent on precise
formation f lying while completing a distributed task, such as simulated
"large-aperture" interferometry to analyze the chemical signatures of
planets thousands of light years away.

Existing solutions for understanding pose and position have strict limitations such as the
presence of a known magnetic field, line of sight to the sun, or precision insufficient for
close-range (under 1m) maneuvers.

As though developing for an actual picosatellite, our system is constrained by limited energy
resources and limited computation power.

In addition, the lack of an actual picosatellite system required the encapsulation of modules so that
simple mixins could be applied to utilize the code in another system altogether.

The Constraints

Er ic Swenson
Andrew Tran

Ron Scrofano
Aaron Brown

Picosatellite Relat ive Pose and Posit ion via
CUDA Accelerated Computer Vision

Gustavo Cornejo
Alex Thielk
Angel Ortega

Open-source computer vision library with
Python bindings (except for CUDA modules)

GPU-accelerated technology, with usage in
OpenCV's CUDA modules

OpenCV
ImPController

Flask Server
Job Handler

Internal
Storage

React
Web App.

External
Storage

Lifecycle of an Event

Python compiler to C/C++ code that allowed
Python bindings to CUDA-accelerated C/C++

functions

Component St ructure

