
Career Fair Recruiting App



What Problem are we Solving?

● Current recruiting process is laborious and manual
● Easy-to-use applicant management system to use at career fairs
● Automatic information parsing from resume
● Automatic application creation on company database
● Ability to attach notes onto application gained from in-person interactions 

with recruiter



How do we plan on solving this?

● Mobile Application
○ Allows recruiters to:

■ Take a picture of the applicant’s resume
■ Create an application using that image
■ Write notes on applicant
■ Send resume to company’s database

Goal: Help increase application efficiency for recruiters at events including 
career fairs and mixers by providing a easily accessible and portable 
solution



Technologies

● Tesseract
○ Open Source OCR Engine

■ OCR - Optical Character Recognition
○ Advantages:

■ A lot of documentation online
○ Disadvantages:

■ Resumes have different formats
■ Entire resumes may contains lines or other non-alphanumeric characters

Solution: Image Processing - pre-process image before sending the image to 
Tesseract



Backend

● Gateway API -> S3 -> Lambda
○ API calls from front end to store image in S3
○ Lambda function triggered from S3 to parse image
○ Store result back into S3

● Use Tesseract (OCR) to convert image into text
● Use custom image processing to yield better result when using Tesseract
● App uses API calls to access processed resume information or resume 

photo



Backend



Tesseract Technology and Innovation

- Main goal of back end is to obtain text from resume
- Translating resume picture into text is hard

- Google’s open source software Tesseract
- Open source Computer Vision library OpenCV

- Document parsing still an active area of research
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OpenCV

Use OpenCV to detect edges of 
areas on picture with high activity

Using coordinates, visualize into 
boxes to only separating the 
whitespaces



Frontend

● iOS application
● Initial image recognition on client side
● Core information client side parsing

○ Contact information

● Display applicant information
● Send to server side

○ HTTP Requests



Design



Design



Workflow

● “Dummy” frontend app
○ iOS App pulls and 

populates fields 
with data from 
backend

○ Sends data to 
server

● Backend
○ Stores data and 

images
○ Does heavy 

processing



System Design Choices

● Modularity, Portability, and Efficiency
○ Minimize downtime
○ Allow for future improvement and portability

● iOS App
○ Optimization choice: Some image processing and parsing on frontend
○ Can run independent of backend

● Backend
○ Faster and retains more information, faster on server side
○ All data and most processing is on backend, so portable to different operating systems

■ Android



Demo

http://www.youtube.com/watch?v=fyPijMTTQIc


Next Steps

● Linking Backend to app
○ HTTP requests
○ Amazon Lambda

● Database for completed applications
○ Amazon S3
○ Workday

● Machine Learning
○ OpenCV
○ Edge detection


