
Career Fair Recruiting App

What Problem are we Solving?

● Current recruiting process is laborious and manual
● Easy-to-use applicant management system to use at career fairs
● Automatic information parsing from resume
● Automatic application creation on company database
● Ability to attach notes onto application gained from in-person interactions

with recruiter

How do we plan on solving this?

● Mobile Application
○ Allows recruiters to:

■ Take a picture of the applicant’s resume
■ Create an application using that image
■ Write notes on applicant
■ Send resume to company’s database

Goal: Help increase application efficiency for recruiters at events including
career fairs and mixers by providing a easily accessible and portable
solution

Technologies

● Tesseract
○ Open Source OCR Engine

■ OCR - Optical Character Recognition
○ Advantages:

■ A lot of documentation online
○ Disadvantages:

■ Resumes have different formats
■ Entire resumes may contains lines or other non-alphanumeric characters

Solution: Image Processing - pre-process image before sending the image to
Tesseract

Backend

● Gateway API -> S3 -> Lambda
○ API calls from front end to store image in S3
○ Lambda function triggered from S3 to parse image
○ Store result back into S3

● Use Tesseract (OCR) to convert image into text
● Use custom image processing to yield better result when using Tesseract
● App uses API calls to access processed resume information or resume

photo

Backend

Tesseract Technology and Innovation

- Main goal of back end is to obtain text from resume
- Translating resume picture into text is hard

- Google’s open source software Tesseract
- Open source Computer Vision library OpenCV

- Document parsing still an active area of research

Full Document Tesseract

Old Result

New Parsed Result

 Old Image

 New Image

Old Result

New Result

OpenCV

Use OpenCV to detect edges of
areas on picture with high activity

Using coordinates, visualize into
boxes to only separating the
whitespaces

Frontend

● iOS application
● Initial image recognition on client side
● Core information client side parsing

○ Contact information

● Display applicant information
● Send to server side

○ HTTP Requests

Design

Design

Workflow

● “Dummy” frontend app
○ iOS App pulls and

populates fields
with data from
backend

○ Sends data to
server

● Backend
○ Stores data and

images
○ Does heavy

processing

System Design Choices

● Modularity, Portability, and Efficiency
○ Minimize downtime
○ Allow for future improvement and portability

● iOS App
○ Optimization choice: Some image processing and parsing on frontend
○ Can run independent of backend

● Backend
○ Faster and retains more information, faster on server side
○ All data and most processing is on backend, so portable to different operating systems

■ Android

Demo

http://www.youtube.com/watch?v=fyPijMTTQIc

Next Steps

● Linking Backend to app
○ HTTP requests
○ Amazon Lambda

● Database for completed applications
○ Amazon S3
○ Workday

● Machine Learning
○ OpenCV
○ Edge detection

