

ArGus

Introduction | Who We Are

Eric Swenson

Team Lead

Andrew Tran

Team Scribe

Alex Thielk

Team *Firebasebender*

Ángel Ortega

Team ⊕ Expert

Gustavo Cornejo

Team Guüs

ArGus:

Aerocube-WebApp

Aerocube

△ Aerocube-ImP

***** Aerocube-MaL

(UI) (Infrastructure) (Image Processing) (Machine Learning)

Your Fire Nation

CubeSat Swarms for Attitude Control

Problem

- High maintenance
 - Astronauts are required to service satellites
 - Manned-missions are not reachable from a shuttle for monitoring
 - Communication Signals from Earth are unreliable
- Deployed satellites require monitoring
- Tradeoffs: Power dissipation vs. Performance
- Processing Power

Motivation

Satellites Are Expensive

The CubeSat is a low-cost solution for space missions

Deep Neural Networks and CUDA

- Algorithms can now run on a low-cost 50x87mm NVIDIA embedded computer
- Allows for GPU-accelerated parallel processing
- High-performance, low-power tradeoff

Computer Vision

- Computer Vision for estimating pose and identifying entities
- o Computational power with GPUs, parallel programming, and ML models

Technologies

Web Application

React.js

Ecosystem & Views

Redux

Async Event Lifecycle

Reselect

Efficient Data Hooks

Immutable.js

Application State

Firebase

DB & Bucket Storage

Webpack

Bundling & Building

Enzyme, Karma,
 Mocha, & Chai

Testing

Infrastructure

Flask

Event Source

Events and Signals

Custom Event System

TCP

Communication

Controller

Center of the world

NVIDIA Jetson TX1

High-Performance "CubeSat"

Satellites are Expensive

Image Processing

OpenCV

Image Manipulation

Aruco

Fiducial Marker Creation, Detection

NVIDIA CUDA

GPU-Accelerated Image Processing

Roadmap

Current Status

Merged 1

- Receive image
- Identify fiducial marker(s)
- Store results in database

Future steps nopen

- Using pose from fiducial markers find pose of AeroCubes
- Complete Dashboard UI
- **CUDA-accelerated programming**
- Garbage collection of similar images and redundant data
- Making software architecture independent for future space deployment missions
- Feedback to the camera

Merge pull request

Prototype Demo

Main Use Case:

- 1. Send image
- 2. Process image
- 3. Receive ID's in firebase

Questions?

Satellite Attitude Control & Image Acquisition

On June 30 2003, a CubeSat space deployment mission (AAU CubeSat), for the purpose of creating an attitude control system and acquiring images of the Earth, was launched by the Aalborg University in Denmark.¹

¹ Alminde, Lars, et al. "Educational value and lessons learned from the AAU-CubeSat project." In *Recent Advances in Space Technologies*, 2003.