Information
Authors: Trevor Frese, Evan Crook, Britt Christy, Kevin Malta
Team: Struct byLighting

Project Name: Benedictation

Revision History

1/22/2015: Created Living Requirements Doc
1/29/2015: Added glossary of terms, technologies
2/24/2015: Updated for Draft 2

Intro
Benedict is your British bald bold blunt benevolent bourgeois busy bilingual butler who
brings you beneficial background business binaries. Benedict will schedule meetings for you,

take notes for you, and provide relevant information to your meeting.

Glossary of Terms

API-_Application Program Interfaces are pieces of software that interact with other
pieces of software

Speech recognition - the process of taking an audio signal and recognizing spoken
words and converting them to text

Natural language processing - the process of analyzing text in human language (e.g.
the output of speech recognition) to model and understand its semantic meaning

Benedict - the benevolent British butler who understands your commands and works

to help with your meeting in any way he can (aka the personification of our virtual assistant)

System Architecture: High-Level Overview

The project has two basic parts: the video chat system, and the virtual assistant. The
video chat is peer-to-peer, using WebRTC via Icecomm.io which handles the signalling
server: the server acts as an intermediary to set up connections between clients, which then
connect directly to each other. The virtual assistant uses speech recognition via
Pocketsphinx.js on each client to interpret the audio stream coming from that client and
produce text tokens, and sends these to a server running the Natural Language Processing

system and request handler. The server interprets the text it receives, uses natural language

processing via the NLTK library to understand commands given to it, and performs the
requests via the appropriate APlIs. It then creates presentations of these results in views and

sends them to the clients, where they are rendered and displayed.

Client Side Server Side

_» lcecomm: P2P communication :
: Signalling/STUN servers
: [external]

user media...

remote peer media

Python server

user media - -

user's local
audio stream

pocketsphinx.js
Speech Recognition

[—

libpocketsphinx
/J Server-side speech recognition I

\‘ User speech as text

MLTK
Matural Language Processing

preprocessed audi
speech data

Interpreted user requests
[via websockets)

7""Google Calendar

Benedict
eqyests APl

Handling of user requests and
Tsp PhNses.

responses
T,

" OtherApls

Application logic

Rendered views Rendering of web pages

Users database
Login i —
e O OB AR

Rails server

o e e e e e e e e e e e

Implemented User Stories:

1. As auser | can login to the website via Google Account

As a user | can create a chatroom so that | can talk with people

As a logged-in user, | can create a chatroom that is associated with my group
As a logged-in user, | can create a temporary chatroom not associated with any group.
As a user | can join a chatroom
As a user | can leave a chatroom

As a user | can send and receive text from one peer to another

© N o o bk Db

As a user | can send and receive real-time audio from one peer to another

9. As auser | can send and receive real-time video from one peer to another

10. As a user | can create a group and have it persistent, whereas chatrooms are created
and destroyed much like phone calls

11. As a non-logged-in user | can visit a chatroom page, get redirected to login, and get
redirected back to the chatroom | was originally trying to go to

12. As a user | can use my google profile picture as my chat icon

13. As a user | can see my most recent messages in the chat

14. As a user | can join a chatroom of up to 6 users

15. As a user my video is displayed in a pleasing format

16. As a user | can delete a group that | have created

17. As a user | can login once, and be confident that | will stay logged in until | log out

Not Implemented User Stories:

As a user | can invite other users to a chatroom

As a user | can join a group

As a user | can view a list of all groups | am a member of
As a member of a group, | can add other users to the group
As a member of a group, | can leave a group

As a user | can view a list of all currently active group chats

As a user | can see my speech recognition results

© N o o bk o Dd =

As a user | can request Benedict to schedule a meeting for a given date and time, and

have the system create an event in the Google Calendar of all participating users

©

As a user | can ask for the current weather in my location via Benedict

10. As a user | can ask a direct question to Benedict about some information that | would
like to receive

11. As a user | can have “Benedict on the go” and can redirect Benedict to my mobile
device via our Companion app

12. As a user | can request specific information from Benedict about me from my

Calendar

13. As a user | can request information about other users in the call from Benedict

Tests

1. Login tests:
a. Can users login via their google account?
b. Can we receive user information from the google account omniauth?
c. Are users who don’t have google accounts allowed to login?
2. Groups tests:
a. Can multiple users join multiple groups?
b. Are all the groups for a user listed in order of creation?
c. Can users delete groups?
d. Can users invite others to their groups?
3. Chatroom tests:
a. Can users create a chatroom?
Can users invite groups to a chatroom?
Can invites be sent via email?
Can more than 6 users join a chatroom?
Can a user’s message show up in the chat?
Does a user’s correct profile picture show up in the chat?
Can a not logged in user get redirected to the login page and then get
redirected back to the chatroom page after?

@ "o o000

Github URL: https://qgithub.com/Team-Struct-by-Lightning/Benedictation

System Models (design)

https://github.com/Team-Struct-by-Lightning/Benedictation

View

L= icecomm.io

S

Who am 17
‘ngm&tﬂc MNAT
Channel please ’
Offer SDP ’ Offar SDP ’
‘ Answer SDP) 1 Answer SDP
ICE candidate (A) ’- ICE candidate {A) ’
¢ ICE candidate (B) ‘ ICE candidate (B)
‘ Who am 17
213.51.61.3:5656 ’

MDMN WebRTC Overview

Technologies Employed

e WebRTC -- a set of standards for providing real-time peer-to-peer video chat in
browser, as implemented by Chrome

e Icecomm.io -- a startup providing NAT traversal and an APl over WebRTC. Icecomm
is a client-side wrapper for Web Real-Time Communication (WebRTC). Developers
are able to fully utilize the benefits of WebRTC without having to type any server-side
code. With only six core methods, developers can easily create dynamic wep apps to
transfer data and media between peers, and create connected web apps with many
rooms and users.
NLTK or a similar natural language processing system
Google Calendar API, and any other APIs needed for the services Benedict provides
Ruby on Rails, a full-stack web framework, for building the site

e Pocketsphinx.js - a speech recognition library written entirely in JavaScript and
running entirely in the web browser.

