"BikeSmart" Project Requirements

This document describes the requirements, use cases, technologies employed, and system architecture of the "Bikesmart" Project - designed and implemented by the *Treadsetters* team.

Treadsetters

Saili Raje, Lead

Joel Dick

Chris Karcher

Duncan Sommer

Oliver Townsend

Revision History

Version Number	Primary Author(s)	Version Description	Date Completed
1.0	Saili Raje, Joel Dick, Duncan Sommer, Oliver Townsend, Chris Karcher	Initial Version with user stories	1/23/15
1.1	Saili Raje, Joel Dick, Duncan Sommer, Oliver Townsend, Chris Karcher	Added System Architecture and Glossary	1/29/15

Table of Contents

- Introduction
- Glossary of Terms
- Revision History
- System Architecture Overview
- Requirements (functional and non-functional)
 - At least 10 use cases or user stories
- Prototyping code and test cases (Github URL)
- System models N/A
- Appendices Technologies employed

Introduction

There is no existing platform that allows a bicycle to communicate with other devices via the Internet. Such a system will need to solve power and connectivity issues related to an embedded system on a bike. Our team is designing BikeSmart to enable developers to create profitable applications for users ranging from the casual commuter to the professional cyclist. This project will also act as a proof of concept for further integration of bikes into the IoT.

Glossary of Terms

Embedded System - an embedded system is a computer system with a dedicated function within a larger mechanical system, such as a bicycle

Internet of Things (IoT) - the interconnection of uniquely identifiable embedded computing devices within the existing Internet infrastructure.

Parse - a cloud based application engine that allows developers to receive and distribute information and messages to devices on the internet.

System architecture overview

This system will be comprised of:

- An Android service that runs on an embedded system simulated by a mobile phone that captures data from the bike, stores it locally, and sends it to a cloud database intermittently while minimizing power consumption.
- A backend database running on a remote server that will receive and process data, then distribute the data to remote clients.
- At least one specialized mobile application that will utilize the data provided by the database to deliver content to a Bikesmart user.
- A frontend web interface which gathers content from the remote server and presents it in a clear and organized manner to users.

Requirements (functional and non-functional)

As a user, I should be able to:

- login to an online service to view data generated by my bike
- associate my identity with a bike
- add other users to my bikes
- store my bike's data (location, tire pressure, etc) in the cloud
- share my data with others
- control the privacy of my data

- access an intuitive graphic interface that presents collected data
- download applications that utilize collected data
- interact with the BikeSmart system from multiple platforms

As a developer, I should be able to: - access multiple sources of data on the bike - build applications on top of the BikeSmart platform - design sensors and integrate them into the BikeSmart system

Prototyping code and test cases (Github URL)

https://github.com/sraje/CAPSTONE

System Models

Appendices/Technologies Used

- Parse Application Engine and API
- Google Location API
- Android SDK
- Pivotal Tracker
- Github