Information
Authors: Trevor Frese, Evan Crook, Britt Christy, Kevin Malta
Team: Struct byLighting

Project Name: Benedictation

Revision History
1/22/2015: Created Living Requirements Doc

1/29/2015: Added glossary of terms, technologies

Intro
Benedict is your British bald bold blunt benevolent bourgeois busy bilingual butler who
brings you beneficial background business binaries. Benedict will schedule meetings for you,

take notes for you, and provide relevant information to your meeting.

Glossary of Terms

API-_Application Program Interfaces are pieces of software that interact with other pieces
of software

Speech recognition - the process of taking an audio signal and recognizing spoken
words and converting them to text

Natural language processing - the process of analyzing text in human language (e.g.
the output of speech recognition) to model and understand its semantic meaning

Benedict - the benevolent British butler who understands your commands and works to

help with your meeting in any way he can (aka the personification of our virtual assistant)

System Architecture: High-Level Overview

The project has two basic parts: the video chat system, and the virtual assistant. The
video chat is peer-to-peer, using WebRTC and a signalling server: the server acts as an
intermediary to set up connections between clients, which then connect directly to each other.
The virtual assistant uses speech recognition on each client to interpret the audio stream
coming from that client and produce text tokens, and sends these to a server running the
Natural Language Processing system and request handler. The server interprets the text it

receives, uses natural language processing to understand commands given to it, and performs

the requests via the appropriate APlIs. It then creates presentations of these results in views and

sends them to the clients, where they are rendered and displayed.

Use cases:
1. As auser | can login to the website via Google Account
2. As auser | can create a chatroom so that | can talk with people
3. As auser | can invite other users to a chatroom
4. As alogged-in user, | can receive an invitation to a chatroom via notification directly on
the website
As a non-logged-in user, | can receive an invitation to a chatroom via email
As a user | can view a list of all currently active chatrooms

As a user | can join a chatroom

© N o o

As a user | can leave a chatroom

9. As auser | can send and receive text from one peer to another

10. As a user | can send and receive real-time audio from one peer to another

11. As a user | can send and receive real-time video from one peer to another

12. As a user | can create a group (like our #channels in slack) and have it persistent,
whereas chatrooms are created and destroyed much like phone calls

13. As a user | can join a group

14. As a user | can view a list of all groups | am a member of

15. As a member of a group, | can add other users to the group

16. As a member of a group, | can leave a group

Tests

1. Login tests:
a. can users login via their google account?
b. Can we receive user information from the google account omniauth?
c. Are users who don’t have google accounts allowed to login?
2. Groups tests:
a. Can multiple users join multiple groups?
b. Are all the groups for a user listed in order of creation?
c. Can users leave groups?
3. Chatroom tests:
a. Can users create a chatroom?
b. Can users invite groups to a chatroom?

c. Can invites be sent via email?

Technologies Employed

WebRTC -- a set of standards for providing real-time peer-to-peer video chat in browser,
as implemented by Chrome

Icecomm.io -- a startup providing NAT traversal and an APl over WebRTC. Icecomm is
a client-side wrapper for Web Real-Time Communication (WebRTC). Developers are
able to fully utilize the benefits of WebRTC without having to type any server-side code.
With only six core methods, developers can easily create dynamic wep apps to transfer
data and media between peers, and create connected web apps with many rooms and
users.

NLTK or a similar natural language processing system

Google Calendar API, and any other APIs needed for the services Benedict provides
Ruby on Rails, a full-stack web framework, for building the site

Pocketsphinx.js - a speech recognition library written entirely in JavaScript and running
entirely in the web browser.

