Y
et
i!
b
g
L
-
I

b

S L
<
&
alrea
¥

¥ mmmr

T i

The Aerospac

Capstone -
Adventures in Embedded GPGPU Processing

Moose Blazers: Jordan Pringle, Melissa Anewalt, Scott Walstead, Peter Gaede
) UC SANTA BARBARA
engineering

Mentor: Ron Scrofano

Inspiration

e There is a strong demand for high performance
processing in power constrained environments

e Current embedded systems meet the low power needs
but do not have enough processing power with the CPU
alone

e The Jetson TK1 has a powerful GPU but weak CPU
performance

NVIDIA Jetson TK1

e GPU with 192 cores

e Quad-Core ARM
Cortex A15 CPU

e CUDA support

e Uses ~5Watts under
load

GPGPU Processing

e Accelerated How GPU Acceleration Works
Computing Application Code

e CPU with GPU

e GPU used for oy ol

' Rest of Sequential
CPU Code

CPU

independent
intensive

calculations

Goals

Speed up processing using GPGPU

Gain experience in CUDA and OpenCV C++
Compare processing performance (serial vs. parallel)
Create an interesting image processing application

Ping Pong

e Track the ball

e Velocity

e Predict the
trajectory

e Will the ball go
over the net?

Motion Tracking

e Filter by color
thresholds

e Find the center

e Detect changes in
position

e Compute velocity inx "
pixels per second

Edge Detection

Alternative to using color

Hoffman Circles

Detect the center

Problems

o Low Frames Per Second
(fps)

o False positives

o False negatives

Kinematic Equations

e 2D velocity and position 20 Kinemabes .
o Use Qr_awty_ yoh Fo= e %= Xtk + L™
approximation 9 Ll Pale @) ¥: =V +it + 56 2
e Predict the trajectory | b) \
o Willitgooverthe net? 8 4
a,=“3="f~?"/s°} oo Rty
C\y = O Mo oN !

-

Prediction Analysis

Jetson TK1

e Set up the board

e Board was recently
released

e Not compatible with
certain libraries

e Random logouts

OpenCV

e Edge detection - Hoffman
circles

e Motion detection using
color thresholding

e Library function calls

CUDA

Edge detection in CUDA
Motion detection in CUDA
Parallel processing is faster
More difficult than serial

<ANVIDIA.

CUDA.

Video Input

e We first used the OpenCV method
VideoCapture to bring in individual video
frames for processing

e \We discovered that VideoCapture was far
too slow for our application

e Our solution: use Gstreamer to hardware
accelerate the h.264 video decoding

Displaying the Output

e OpenCV provides imshow function

e Really laggy due to slow CPU

e OpenGL version of imshow not compatible
with Jetson TK1 (OpenGL uses GPU)

e Our solution: Use Qt to display output
HEIER

Full Implementation

Filesrc

h264 720p mp4

Src

QtDisplay Qimage

.

Demuxer Parser Decoder
gtdemux h264 parse h264 dec
> sink src > sink src > sink src | |
raw
) _ RGBA
Mat Appsink videoconvert
Process
buffer BGR
e B— e B— < <
src sink src sink

Testing

e Tried different
threshold values for
edge detection and
color detection

e Filmed at many
different angles,
lighting conditions,
distances, FPS, and
resolutions

e Used 720p at 60 fps

. - il 1
— COMPETITION 25 ROLLAWAY '/
x | 181
2)&

Wty

]

Performance

e CPUvs. GPU

* Processing Time/Frame
on 1080p Video

0.25

0.2

0.15

- F Parallel W Serial

0.05

Motion Tracking Edge Detection

Other Applications - Basketball,
Tennis

£

RAONICS CU\ |)

>SN

Conclusion

e Embedded processors and spaceborne processors
operate in power constrained environments

e Computationally intensive applications, such as
computer vision, are a challenge for low-power

embedded systems
e GPU acceleration is viable, but presents challenges

