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Inspiration

e There is a strong demand for high performance
processing in power constrained environments

e Current embedded systems meet the low power needs
but do not have enough processing power with the CPU
alone

e The Jetson TK1 has a powerful GPU but weak CPU
performance



NVIDIA Jetson TK1

e GPU with 192 cores

e Quad-Core ARM
Cortex A15 CPU

e CUDA support

e Uses ~5Watts under
load




GPGPU Processing

e Accelerated How GPU Acceleration Works
Computing Application Code

e CPU with GPU

e GPU used for oy ol

' Rest of Sequential
CPU Code

CPU

independent
intensive

calculations



Goals

Speed up processing using GPGPU

Gain experience in CUDA and OpenCV C++
Compare processing performance (serial vs. parallel)
Create an interesting image processing application



Ping Pong

e Track the ball

e Velocity

e Predict the
trajectory

e Will the ball go
over the net?




Motion Tracking

e Filter by color
thresholds

e Find the center

e Detect changes in
position

e Compute velocity inx "
pixels per second



Edge Detection

Alternative to using color

Hoffman Circles

Detect the center

Problems

o Low Frames Per Second
(fps)

o False positives

o False negatives



Kinematic Equations
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Prediction Analysis




Jetson TK1

e Set up the board

e Board was recently
released

e Not compatible with
certain libraries

e Random logouts




OpenCV

e Edge detection - Hoffman
circles

e Motion detection using
color thresholding

e Library function calls




CUDA

Edge detection in CUDA
Motion detection in CUDA
Parallel processing is faster
More difficult than serial

<ANVIDIA.

CUDA.




Video Input

e We first used the OpenCV method
VideoCapture to bring in individual video
frames for processing

e \We discovered that VideoCapture was far
too slow for our application

e Our solution: use Gstreamer to hardware
accelerate the h.264 video decoding



Displaying the Output

e OpenCV provides imshow function

e Really laggy due to slow CPU

e OpenGL version of imshow not compatible
with Jetson TK1 (OpenGL uses GPU)

e Our solution: Use Qt to display output
HEIER



Full Implementation
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Testing

e Tried different
threshold values for
edge detection and
color detection

e Filmed at many
different angles,
lighting conditions,
distances, FPS, and
resolutions

e Used 720p at 60 fps
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Performance

e CPUvs. GPU

* Processing Time/Frame
on 1080p Video
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Other Applications - Basketball,
Tennis
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Conclusion

e Embedded processors and spaceborne processors
operate in power constrained environments

e Computationally intensive applications, such as
computer vision, are a challenge for low-power

embedded systems
e GPU acceleration is viable, but presents challenges






