Software Requirements Specification for Project Bowser Page 1

Software Requirements
Specification

for

Project Bowser

Version 1.1

Prepared by

Group Name: Let My People Code

Moshe Carmeli 4770954 moshecmeli@gmail.com
Chris Nelson 5176169 sciencecthn@gmail.com
Adam Ehrlich 4847885 adamsehrlich191@gmail.com
Alex Sarraf 4913604 alex.sarraf@gmail.com
Daniel Imberman 4301487 danielryan2430@gmail.com

Instructor: Chandra Krintz/Tim Sherwood
Course: Computer Science 189
Lab Section: Wednesday 6 PM

Teaching Assistant: Geoffrey Douglas
Date: March 4, 2014



Software Requirements Specification for Project Bowser

REevisions

1 INTRODUCTION

1.1 DocumEeENT PurPOSE

1.2 ProbucT Scopre

1.3 INTENDED AUDIENCE AND DocUMENT OVERVIEW
1.4 DeFINITIONS, ACRONYMS AND ABBREVIATIONS
1.5 DocuMENT CONVENTIONS

1.6 REFERENCES AND ACKNOWLEDGMENTS

2 OvVERALL DEsSCRIPTION

21 ProbucT PERSPECTIVE

2.2 ProbucTt FUNCTIONALITY

2.3 Users AND CHARACTERISTICS

2.4 OPERATING ENVIRONMENT

2.5 DEesIGN AND IMPLEMENTATION CONSTRAINTS
2.6 User DOCUMENTATION

2.7 AssuMPTIONS AND DEPENDENCIES

3 SPECIFIC REQUIREMENTS

3.1 EXTERNAL INTERFACE REQUIREMENTS
3.2 FuNcTIONAL REQUIREMENTS
3.3 BEHAVIOUR REQUIREMENTS

4 OTHER NON-FUNCTIONAL REQUIREMENTS

4.1 PERFORMANCE REQUIREMENTS
4.2 SAFETY AND SECURITY REQUIREMENTS
4.3 SoFTWARE QUALITY ATTRIBUTES

Page 2



Software Requirements Specification for Project Bowser

Page 3

Version

Primary Author(s)

Description of Version

Date Completed

1.0

Moshe Carmeli,
Chris Nelson,
Adam Ehrlich, Alex
Sarraf, Daniel
Imberman

First version

2/10/2014

1.1

Moshe Carmeli,
Chris Nelson,
Adam Ebhrlich, Alex
Sarraf, Daniel
Imberman

Updated user stories and other minor details

3/3/2014




Software Requirements Specification for Project Bowser Page 4

1 Introduction

Project Bowser aims to seamlessly introduce Android cellphone users to the world of robotics by
serving as an adapter for ubiquitous cellphones to function as autonomous robots. In this section of
the documentation, the goals and abstract project outline are detailed. These serve to inform the
reader of the objectives of Project Bowser and how these objectives will be met.

1.1 Document Purpose

The purpose of this report is to fully document Project Bowser v1.0 which will be carried out by Let
My People Code. This SRS aims to provide guidelines for how the project will be deemed
successful and how these concepts and ideas will be created, effectively. Furthermore, this
document will serve as an agreement between Let My People Code and Qualcomm as to what this
project will entail such that both parties may understand the specifications, requirements, and
design of Project Bowser.

Note: In the event of dispute between both parties (Let My People Code and Qualcomm), this
document will serve as a reference for mediation. No significant changes in Project Bowser’s plans
or workflow will take place without proper revision of this document and consent from both parties.

1.2 Product Scope

Project Bowser aims to utilize the processing power of the host Android phone to perform useful
tasks by using the rovers’ physical equipment. There are a large number of applications which
could be developed, many of which would be revolutionary for cell phone users everywhere.
Project Bowser hopes to bring some of the most ambitious and promising ideas to the Mini-Dragon
Rover so that it can be showcased and popularized for public consumption.

The developed code and features will all be open-sourced in order to facilitate manipulation and
advancement by motivated contributors. The open-source environment and cost effective
construction cost of the MDR will make Project Bowser a hotbed for innovation and education.

In particular, our team will be utilizing Qualcomm’s Gimbal Bluetooth beacon and Vuforia computer
vision library to create an autonomous navigation system for a 3D printed rover. In addition, the
rover will be able to be controlled remotely through a web interface.

1.3 Intended Audience and Document Overview

This Document is intended for all readers interested in learning about Project Bowser. Section 1.4
serves as a reference for explanations and definitions of terms, abbreviations, and acronyms.
Section 2 provides an abstract overview of the project and its mechanics while Section 3 provides
details about how the functionality and features will be implemented and created. Other
Non-functional requirements are detailed in Section 4 and Section 5.



Software Requirements Specification for Project Bowser Page 5

1.4 Definitions, Acronyms and Abbreviations

3D Printed — Manufactured through Additive Manufacturing with a 3D printer

Additive Manufacturing — Layering materials in different shaped to create 3D objects

Android — An operating system based on the Linux kernel used in many smartphones

Kernel — a computer program that manages input/output requests from software and translates
them into instructions for the CPU

Mini-Dragon Rover (MDR) — The 3D printed robotic carriage for Android cellphones on which

Project Bowser is focused

Bluetooth LE (BLE) — Bluetooth Low-Energy, the technology used for location beacons

1010 — Pronounced yo-yo. A library for Android allowing you to communicate with hardware with

the help of a special accessory board (the IO1O board).

1.5 Document Conventions

Some titles are in Bold text.

1.6 References and Acknowledgments

Mentor: Chad Sweet, Director of Software Engineering at Qualcomm



Software Requirements Specification for Project Bowser Page 6

2 Overall Perspective

2.1 Product Perspective

The main purpose behind Qualcomm’s Mini-Dragon Rover use existing technology that everyone
has (smartphones) and interface it with a 3D printed rover. Our role in this product is to create
interesting demos showing off the capabilities of the rover and smartphone combined.

2.2 Product Functionality
These are the possible major functions, (in order of most to least likely to be implemented):

e Indoor position awareness using Bluetooth LE beacons
e Target following, by tracking Vuforia markers
e Remote controlling of the MDR over the web (could be used as a security monitor)

2.3 Users and Characteristics

The initial users of Project Bowser's software will be early adopters who wish to get the most
functionality out of their phone as possible and developers (innovators) who wish to implement their
own apps and services on the MDR.

Qualcomm’s ultimate goal with this MDR is to create a simple robot which takes advantage of the
modularity of 3D printing. Users will be able to create their own APIs and custom parts to build
cheap custom rovers that can perform a wide array of functions.

Eventually, these apps will reach the early majority which already own an Android phone, and will
do more consumption than contributing. These users will wish to show their friends the newest
technologies and take advantage of the newest offerings in entertainment/utility for their phones.
However, with increased popularity, more developers will be inclined to take up developing Android
apps which utilize the MDR (especially since the code is open-source).

2.4 Operating Environment

Project Bowser will mostly consist of Android OS 4.3 (minimum) applications which will utilize the
functionality available on the Mini-Dragon Rover. The applications will interact with the MDR’s 1010
board and communicate with other devices such as Bluetooth LE beacons to perform tasks
autonomously and interactively.



Software Requirements Specification for Project Bowser Page 7

i 'GET' query for trilateration values

'GET' query for Commands -

Servers

; i 'POST' query for commands
POST query for trilateration values z

A Web Page

< QO XQ Er ) @

S5erves

\
O :

—D>

1010 API

0 000 000

O 0O U0UU

Figure 1 Interface diagram for phone on MDR

2.5 Design and Implementation Constraints
Some of the significant constraints on Project Bowser are:

e Since the MDR is still considered a part of Qualcomm’s research branch, certain important
aspects have not yet gained legal clearance for public use.

Critical application for Bluetooth LE detection has not yet been released for android.

Need to use Android 4.3 or above

Need phones capable of Bluetooth LE

Need to communicate with MDR peripherals through the 1010 board



Software Requirements Specification for Project Bowser Page 8

2.6 User Documentation

While our app will be relatively simple to use, it introduces new technologies, new concepts, and
new functionalities which users will need to learn. We will provide comprehensive documentation
online such that the transition from simply Android phone to MDR will be quick and painless for
users of all levels.

Online Help:
e Tutorial Videos
e Step-by-step guides for using the app
e FAQs and answers
e Javadoc

2.7 Assumptions and Dependencies
Project Bowser makes the following assumptions:

e The user needs to supply their own compatible Bluetooth LE beacons

e The user’s phone needs to be compatible with IOIO boards

e The environment that the rover operates in needs to meet certain criteria in order to be
navigated correctly (e.g. shape of room)

e The user needs to have an MDR



Software Requirements Specification for Project Bowser Page 9

3 Specific Requirements

3.1 External Interface Requirements

User Interfaces

Object Retrieval App Screen:

This screen will present the user with a red block indicating the location of their host MDR within a
rectangle indicating the dimensions of the room. The dimensions corners are marked by purple
circles indicating the reference beacons set up around the room (in a rectangular room). The other
dark blue circles on the screen indicate the estimated location of target devices which the MDR can
navigate to, pick up, and retrieve. The faint blue circles around all devices indicate the margin of
error for location calculations.

all 2ec 3G 0117 PM -
| Maps Il Options ]l Video Feed]

Rover marked in blue. System
will recieve continuous relative

position signal from rover -
beacons are shown as red
dots. Number of beacons is
user can move rover by dynamic depending on
touching screen which will be number used

translated from relative position
into literal position

Figure 2 Rover Location Screen



Software Requirements Specification for Project Bowser Page 10

MDR Remote Control:

The MDR can be controlled via this remote control which provides an easy to use interface for all
the MDR peripherals available. This will likely be the same screen presented to the user when they
use the MDR for other features such as time trial games or picture taking.

A Web Page

<J Q x Q { http://MyRovercom ) m

Mirror
+lir

—
(_J[_(__) T

Motor Speed Fork Lift

Figure 3 MDR remote control screen



Software Requirements Specification for Project Bowser Page 11

Hardware Interfaces

There are three connectivity interfaces we will be using:

App <--> Rover (through IOIO board): This works over either Bluetooth or USB. We will be
using USB, since the Bluetooth radio will be occupied with scanning for beacons. The basics
will include sending PWM signals to control the speed of each wheel. Extra peripherals might
require more methods of hardware communication.

App <--> Bluetooth LE: This is a standard Android library included with API 18 or higher.
Currently, the only functionality we need is scanning to listen for the beacon broadcasts.
Each broadcast consists of an ID an RSSI.

App <--> Camera: We will likely be using Qualcomm’s Augmented Reality SDK, known as
Vuforia, to analyze images from the camera. The robot will be able to recognize objects or
obstacles with the help of special stickers that Vuforia is designed to recognize.

Software Interfaces

1010 Libraries: The Android applications need to communicate with the MDR peripherals via
the 1010 board in the MDR carriage. The signals passed will control the servomotors of the
MDR.

Bluetooth LE: The Android applications must identify its location via Bluetooth LE signals.
These signals will provide a certain strength, which, when compared with reference signals
(thought some complicated modeling), will reveal the relative location of rover between
reference beacons..

WiFi: The Android phone will speak to a server which will link it to a web based remote. This
will offer the incredible benefit that users on any device can control their robot remotely via
the web.

Android: The Android app running on the rover’s phone must communicate with the Android
operating system in order to execute the desired low-level operations.

Python/Nginx Server: The Android app communicates with a web server which is built on
top of the Pyramid Python framework and Nginx HTTP web server. This web server is also
the main interface that the user uses to give commands to in addition to controlling the rover
through the web interface.

Communications Interfaces

WiFi - Used for the remote control interface

Bluetooth LE - Only receives but never sends; used to get the signal strength of each
beacon and tell which one is which

1010 Board - Android can’t directly communicate with the rover’s hardware, so it needs the
IO10 board as an intermediary



Software Requirements Specification for Project Bowser Page 12

3.2 Functional Requirements

User Interface

e The user interface must be able to take in task requests from the user
e The user interface must allow the user the option independently manipulate the MDR

Autonomous Execution

e The features must process user task requests and perform them as autonomously as
possible (e.g. locating itself without walking the user through some procedure)

e The features must be able to forward human interface requests in real time to provide
dynamic maneuvering of the MDR



Software Requirements Specification for Project Bowser

3.3 Behaviour Requirements

User Stories

Difficulty Key:
1 - can be done in 1 day/really quickly
2 - can be done in 1 or 2 days
- can be done in 3 to 5 days
4 - can be done in a week or more

User Stories

As a user, | would like to move my rover forward,backwards,left,and right
remotely.

As a user, | would like to control the motor speed of the servos.

As a user, | would like to set the heading of my rover (0-360°)

As a user, | would like a video feed of where my rover is facing.

As a user, | would like to control the forklift to move up and down.

As a user, | would like to know where my rover is from its trilateration.

As a user, | would like to control the mirror facing the camera view left and right.

As a user, | would like to take pictures and store them for later.

As a rover, | would like to get the distance from 1 beacon.

As a rover, | would like to identify with multiple Bluetooth beacons.
As a rover, | would like to trilaterate from multiple Bluetooth beacons.
As a rover, | would like to reduce noise of beacons.

As a user, | would like to calibrate my rover to new beacons.

As a rover, | would like to recognize visual targets.

As a rover, | would like to understand my current location in relation to a visual
target.

As a rover, | would like to move toward a target but not too close.

As a gamer, | would like to start a time trial clock for gaming.

As a rover owner, | would like secure access to my own rover.

Page 13

Difficulty

N

ARADABAAPRAOE-2DN-



Software Requirements Specification for Project Bowser Page 14

OTHER NON-FUNCTIONAL REQUIREMENTS

4.1 Performance Requirements
Project Bowser has the following performance requirements:

Position resolution with Bluetooth beacons should be completed in less than 5 seconds
Connecting over WiFi should take less than 10 seconds

The MDR will not move fast enough to cause serious physical harm to furniture or people
The MDR should be able to maneuver in different terrains (carpet, tile, etc.)

4.2 Safety and Security Requirements

Safety

e The MDR shouldn’t contain any toxic materials
e (Other than that the MDR is not capable of causing much damage)

Security

e Some basic authentication might need to happen if the MDR is able to be controlled over the
Internet to prevent intrusion attempts.

4.3 Software Quality Attributes

Reliability

¢ Since the MDR will be navigating based on radio measurements, which are inherently noisy,
it needs to be robust in the face of noisy values or unreliable data

e As far as we know, the user is supplying information on the location of each beacon, so the
MDR must respond gracefully in the face of bad input.

Reusability

¢ We want a somewhat generic navigation framework that will work in a variety of scenarios,
as opposed to being hardcoded for our specific testing setup
e It needs to be pretty easy to set up, otherwise no one will want to use it



