Product Design Specification

Daniel Vicory
Omar Masri
Jerry Medina
Nicole Theokari
Justin Liang

for
p2pcast

Version 1.00

Prepared by

Group Name: NP Compete

7024755 dvicory@gmail.com
8646101 marismaro@gmail.com
4349882 jerryfoxyt@gmail.com
5179528 nicole@theokari.com
5217286 justinyliang@gmail.com

Instructor: Chandra Krintz
Course: CMPSC189A
Lab Section: Wednesday 6:00-6:50PM

Teaching Geoffrey Douglas
Assistant:

Date: 3/4/14

mailto:dvicory@gmail.com
mailto:marismaro@gmail.com
mailto:jerryfoxyt@gmail.com
mailto:nicole@theokari.com
mailto:justinyliang@gmail.com

1. Introduction
1.1 Product Overview
1.2 Definitions, Acronyms, and Abbreviations
1.3 Technologies Used
1.3.1 JavaScript
1.3.2 Node.js
1.3.3 Bootstrap
1.3.4 Socket.IO
1.3.5 Heroku
1.3.6 WebRTC
1.4 Team Contact Information
2. Design Overview
2.1 Components
2.1.1 Client
2.1.2 Server

2.1.3 Channel Manager
2.1.4 Channel

2.1.5 Tree Manager

2.2 Software Design

2.3 Client (Web Browser)

2.4 Server (Host)

2.5 Data Flow Diagram

3. Design Specifications

3.1 High-Level Overview

3.2 Channel Creation and Begin Broadcast
3.2.1 Successful Channel Creation for Broadcaster
3.2.2 Failed Channel Creation for Broadcaster
3.2.3 Successful Join Channel as a Viewer
3.2.4 Failed Join Channel as a Viewer

3.3 Detailed User Interaction Design

4. Diagrams and Technical Specifications

4.1 Class Overview

4.2 Client-Server JSON Interface Specification

4.3 Sequence Diagrams

4.4 Other Optional Features
4.4.1 Mobile Support
4.4.2 Screen Sharing
4.4.3 Chat
4.4.4 Audio Broadcasting

4.4.5 Mozilla Firefox
4.4.6 User Registration
4.4.7 Multiple Camera
5. UI Mockups
5.1 Channel Page (Broadcaster)

5.2 Channel Page (Viewer)

Version Primary Description of Version Date Completed
Author(s)
1.01 Daniel Vicory, Initial draft 3/4/2014

Omar Masri, Jerry
Medina, Nicole
Theokari, Justin
Liang

1. Introduction

1.1 Product Overview

p2pcast is a browser-based method of broadcasting video using peer-to-peer technologies. Its purpose
is to allow users to stream video easily, quickly, and free of cost. There are two distinct components
that make up the p2pcast platform. There is a component that runs in the user’s web browser and
another component that functions as a server to enable connectivity between users’ web browsers.

Current services that provide a similar functionality include Skype and Twitch.tv. Skype uses an external
program for its peer-to-peer streaming video. Twitch.tv is a streaming website which uses dedicated
centralized servers to support its massive audience. p2pcast proposes to create a simpler de-centralized
service to use used with no additional installments and with the propose of being multiplatform.
Multiplatform will rapidly grow as support in existing browser and subversion for mobile continue to
extend their support of WebRTC.

1.2 Definitions, Acronyms, and Abbreviations

Term Definition
Web Application The component that runs on end-user’s web browsers, composed of HTML
JavaScript and is also the part that talks to other peers directly

Application The component that runs on the host, used to index channels, facilitate
Server connections, and serve the web application to web browsers

Broadcaster A peer who originates video streams to users

Channel A method of namespacing different broadcaster’s video streams. Channels are

created by a broadcaster which contains only their own video stream. Users can j
a channel to view that broadcaster’s video stream, in which they become a peer f
that specific channel.

Citrix Online The online services division of Citrix Systems, Inc.
End-user A person who uses the p2pcast web application, whether to broadcast or view Vi
streams

Forwarding/ The process of one peer in a network transmitting data it is receiving from anoth:

Rebroadcasting

Google Chrome

Host

ICE Framework

ICE Candidate

JavaScript

NAT

Node.js

p2pcast

Peer

Peer-to-peer

PeerConnection

SDP

Signaling

Socket. 10
SRS
Stream

STUN

peer in the network to at least one other peer

A web browser developed by Google, the primary target of our p2pcast web
application

User that runs a p2pcast application server

ICE is a framework used to connect peers. First tries UDP, then TCP with HTTP
then TCP with HTTPS, then TURN servers.

An ICE candidate is a network interface and port of a peer that is using the ICE
framework

A dynamic computer programming language, the primary development of p2pca
done in

A network protocol used in IPv4 networks that allows multiple devices to conne:
a public network using the same public I[Pv4 address.

A platform built on Chrome's JavaScript run-time, V8, for easily building fast, s«
network applications

A web application that allows for peer-to-peer video broadcasting

A browser that is made available to be connected to by other peers, can be a
broadcaster or user

A method of communication, where most data is transmitted between end-users
instead of centralized servers

An object from the RTCPeerConnection API

Session Description Protocol (SDP) is a format for describing streaming media
parameters used in signaling

A process to exchange control messages and coordinate communication between
peers

A JavaScript library for real-time web applications
Software Requirements Specification
A sequence of data provided in a forward iterable-only manner

Session Traversal Utilities for NAT (STUN) is a protocol that uses a third-party
STUN server to allow peers to discover each other’s IP address even if they are

behind a NAT

CcP This provides reliable, ordered, error-checked delivery of a stream of octets betw
programs running on computers connected to a local area network, intranet or the
public Internet.

TURN Traversal Using Relays around NAT (TURN) is a protocol that uses a third-party
TURN server to allow peers to receive or transmit data over TCP or UDP
connections even if they are behind a NAT

UDP A simple transmission model with a minimum of protocol mechanism.

Web Browser A software application for retrieving, presenting and traversing information reso
on the World Wide Web

Web Server Computer software that deliver web pages to web browsers which may consist o

static and dynamic (JavaScript) components

WebRTC A W3C draft standard that enables Real-Time Communications (RTC) capabiliti
for web browsers via simple JavaScript APIs

1.3 Technologies Used

1.3.1 JavaScript

JavaScript will be the primary core of the p2pcast application, using ECMAScript 5 features within the
web application, and ECMAScript 6 (Harmony) features within Node.js on the server, as applicable.
WebRTC APIs are made available from JavaScript and all client-side scripting requires JavaScript, so it
is a major component of p2pcast.

Primary resource: https://developer.mozilla.org/en-US/docs/Web/JavaScript

1.3.2 Node.js

Node.js is a runtime platform built on Chrome's JavaScript runtime, V8, for easily building fast, scalable
network applications. Node.js contains many modules that allow developers to do system-level
operations that one is not able to do in JavaScript on the web browser. Node.js will be used to power
the application server for p2pcast, handling such things as message routing, tree management, etc.

Target versions: 0.10.26 and 0.11.x

Primary resource: http://nodejs.org/api/

https://www.google.com/url?q=https%3A%2F%2Fdeveloper.mozilla.org%2Fen-US%2Fdocs%2FWeb%2FJavaScript&sa=D&sntz=1&usg=AFQjCNFvMNJ5m83W2VV8i8s-LAc-nDx3cg
http://www.google.com/url?q=http%3A%2F%2Fnodejs.org%2Fapi%2F&sa=D&sntz=1&usg=AFQjCNHNVahmoZ7uwnkj37SycumT1kFvcQ

1.3.3 Bootstrap

Bootstrap is a set of predefined CSS classes that make styling much easier. Bootstrap provides the
default settings for typography, tables, forms, and buttons. Bootstrap also provides reusable
components (navigation bars, pagers, and progress bars) as well as scriptable widgets (tooltips, tabs,
and picture carousels). Since Bootstrap is all CSS and JavaScript you can use Bootstrap with any
server technology or development environment. The idea behind Bootstrap is to get a easily create a
webpage that has consistent and visually appealing styling, without being a designer. Since p2pcast’s
focuses lie on the technical aspect, using Bootstrap to not get distracted is a natural choice.

Primary resource: http://getbootstrap.com/

1.3.4 Socket.IO

Socket.IO is a JavaScript library designed for real-time web applications. It consists of two libraries,
one of which is used on the web browser and the other on the server for Node.js. Socket.1O will
provide all client and server communication.

Targeted versions: 0.9.x

Primary resource: https://github.com/learnboost/socket.io

1.3.5 Heroku

Heroku is a cloud platform used for deployment of web applications in several programming languages.
For quick, universal, and repeatable deployment, p2pcast will use Heroku.

Primary resource: https://devcenter.heroku.com/

1.3.6 WebRTC

WebRTC is a W3C working draft specification that enables web browsers to have Real-Time
Communication between each other via simple JavaScript APIs. It defines primarily three APIs,
MediaStream, RTCPeerConnection, and RTCDataChannel.

Targeted versions: 1.0, draft

Primary resources: http.://www.webrtc.org/, http.//dev.w3.org/201 1/webrtc/editor/webrtc. html

http://www.google.com/url?q=http%3A%2F%2Fgetbootstrap.com%2F&sa=D&sntz=1&usg=AFQjCNFcuWE7kcMSjG0AtLf81JzsTheXPQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Flearnboost%2Fsocket.io&sa=D&sntz=1&usg=AFQjCNGUWRDQZG00oH6JByRfNrYJvUnKPw
https://www.google.com/url?q=https%3A%2F%2Fdevcenter.heroku.com%2F&sa=D&sntz=1&usg=AFQjCNFIDfE0vP_QfIaJ6q3WHhLyIjGejg
http://www.webrtc.org/
http://www.google.com/url?q=http%3A%2F%2Fdev.w3.org%2F2011%2Fwebrtc%2Feditor%2Fwebrtc.html&sa=D&sntz=1&usg=AFQjCNGp3QQ_6WMsm-jU35Ox4siA3pzaYg

1.4 Team Contact Information

Chandra Krintz (Professor)

ckrintz@gmail.com

Daniel Vicory

dvicory@gmail.com

Nicole Theokari

nicole@theokari.com

Omar Masri

marismaro(@gmail.com
Jerry Medina

jerryfoxyt@gmail.com

Justin Liang

justinyliang(@gmail.com

mailto:ckrintz@gmail.com
mailto:dvicory@gmail.com
mailto:nicole@theokari.com
mailto:marismaro@gmail.com
mailto:jerryfoxyt@gmail.com
mailto:justinyliang@gmail.com

2. Design Overview

2.1 Components

p2pcast is composed of two separate but highly integrated projects: the client (web application) and the
server (application server). The major components consist of channel managing mechanisms (global and
individual), tree management, and other peer/user management.

2.1.1 Client

Each client acts as a peer, whether a broadcaster or a viewer. A peer will rebroadcast their received
stream to other peers that connect to them. The connection of peers is dictated by the server, which
facilitates the required WebRTC protocol handshakes. As a client, there is little local control for acting
as a peer for other clients, which supports the ease of use and transparency for underlying technology.

The client, due to its peer to peer nature, actually shares some of the same components of the server.
This lends itself well to code reuse.

2.1.2 Server

The server’s main purpose in p2pcast is to function as a signaling hub. As the WebRTC specification
leaves open the specifics of setting up WebRTC connections with other peers up to the implementer, it
requires a middleman. In our case, p2pcast consists of an application server component which functions
as that role. The p2pcast application server facilitates connections between peers that connect to it. If a
peer disconnects, it is the server’s job to make use of the tree to find new peers for all affected peers.

Beyond that, it must also namespace users between channels, keeping their trees separate. Additionally,
it also provides access control mechanisms for the creation and deletion of channels.

2.1.3 Channel Manager

The channel manager is responsible for creating a channel that is addressable by a unique name, and
also for making sure duplicate channels are not allowed. The channel manager has, or can acquire, a
reference to all channels that exist and is also able to release channels into the available pool (say, by the
request of the broadcaster or for some configurable inactive use).

The channel manager is responsible for routing messages to the correct channel. It also requires a way
to inspect all of its channels (for example, browsing through all channels, or searching).

10

2.1.4 Channel

A channel is the logical wrapper for a broadcaster’s video stream. It is uniquely named in the global
namespace of all channels. It holds a reference to the tree for the peers on that channel as well as
metadata about the channel, for instance, creation timestamps, and textual descriptions set by the
broadcaster. Channels can be configurably leased by the host, where broadcasters who do not
broadcast on their channel for some amount of time can be released to be claimed by other
broadcasters.

Channels are also responsible for controlling access to the tree for which they abstract.

2.1.5 Tree Manager

Every channel has a tree manager that handles all connected peers, new peers, the broadcaster, etc.
The tree manager is aware of the broadcaster peer and structures the tree such that “consumer” peers
are placed below them. Additionally, the tree manager can internally structure the tree to optimize for
peer conditions, such as latency between levels in the tree, and available bandwidth per peer. The
specific arrangement of the tree is not defined, however, except for knowing who the top-level of the
video stream is (the broadcaster) and the ability to find all peers who are affected by another peer
disconnect, so that new connections for those affected peers can be facilitated.

11

2.2 Software Design

Send message to other peer
No peers available / Reject

Add self as new peer

Wanage channel

Read/Write Channel lanager

Peer e
Hessaging Registration

start Server seff-configuration:

Non-exhaustive state diagram for server

2.3 Client (Web Browser)

The p2pcast web application targets the Google Chrome web browser for desktop and laptop. Chrome
is required due to it being the browser with the most WebRTC features implemented, most notably
stream rebroadcasting.

Users access the p2pcast web application hosted on Heroku and are greeted with the option to create
their own channel and become a broadcaster, or join another channel to watch that broadcast. If they
join another channel, the p2pcast application server facilitates a new WebRTC peer connection behind
the scenes and starts the stream, without the user’s explicit knowledge about how it works.

Other variations of the Chrome browser for mobile smartphones or tablets may be compatible. User’s
experience may vary wildly depending what portion of the WebRTC specification is implemented on
these mobile versions.

Each client will be designated as a peer, including the broadcaster. Peer disconnections signal an event
to the server. In the case of sudden interrupt your downstream peers will signal the server about your

12

disconnect. Peer membership in the tree is handled transparently, setting up and tearing down
connections with minimal disturbance.

2.4 Server (Host)

The server is involved in all aspects of peer management, from the beginning of the lifecycle when peers
connect to the end when they disconnect. Once the broadcaster has opened a channel and begun to
stream and a new peer tries to connect to the channel, the server will facilitate the exchange of the
WebRTC connection handshake to each of the two peers involved. Disconnection of a peer will require
server intervention to reconnect one or more peers via the tree manager in a given channel. It is the
server’s duty to match peers together intelligently. For example, avoiding using newly joined peers as a
rebroadcaster may be unwise since they are more likely to disconnect soon. The server should also
know the optimal peer pairing, using the power of the tree manager.

The server keeps a connection open to all peers currently using the p2pcast web application,
exchanging status updates, and other such messages to gauge the quality of the connections, or for
setting up and tearing down peer connections.

2.5 Data Flow Diagram

Chrome
Browser
[Broadcaster]

Chrome
Brows=r

[Feerl]

13

3. Design Specifications

3.1 High-Level Overview

S

Client Server

WebRTC Media
Manager

Channel Manager

hannel
Channel

Messenger

Tree Manager Tree Manager

V]

The major components of p2pcast shown together

3.2 Channel Creation and Begin Broadcast

3.2.1 Successful Channel Creation for Broadcaster

Channel creation is successful if the user inputs a channel name that has either been leased to them or
chooses one that is currently not leased to another broadcaster. The broadcaster will be given access to
change metadata of the channel, such as channel description.

3.2.2 Failed Channel Creation for Broadcaster

Channel creation fails under various circumstances: the channel lease time has run out for that
broadcaster, another broadcaster already has a lease on that same channel name, or there is an
interruption in the p2pcast application server causing a loss of information. The broadcaster will be

15

notified of the issue at fault.

3.2.3 Successful Join Channel as a Viewer

Channel join is successful if the user inputs a channel name directly, or by selection from a list, and that
channel exists. The channel selected should have whatever metadata the broadcaster has assigned. If the
broadcaster is currently streaming, then the viewer will be able to see a video stream within a few
seconds.

3.2.4 Failed Join Channel as a Viewer

Channel join fails under the various circumstances: the channel specified does not exist after selection, or
has metadata that is not identical to what the broadcaster set. Channel join also fails if a video stream is
not able to be started and does not indicate why to the user. The only valid reason for not being able to
start a video stream is if the server decides that no peer has enough available resources to support
another viewer.

3.3 Detailed User Interaction Design

broodeaser

Glve a Channed
MName
ofart a
Channel
Broadcast
Channel Into

Broadcaster interaction

e B

Select from Channel List

n-l Join by url i

Join by Cnannel Name

Viewer interaction

Channal Name

Channel URL

Channel Settings

Channel Viewers

Camera Settings

Video Settings

Streaming Source

Audio Settings

Channel management interaction

16

4. Diagrams and Technical Specifications

4.1 Class Overview

+peerCount: integer
+cookie: string

+incrementPeerCount()
+setCooke (cookie: string)

Server Class

-channe IManager. Object

-initiate ()
-memberiame

Channel Manager

+totalChannels: integer
+maxChannels: integer
+totalPeers: integer

+initiate(maxChannels: integer)
+destroyChannel{channe IName: string)
+=earch (channelName: string)
+createChannel{channeName: string)
+incrementPeerTotal{addon: integer)

Channel Class

+name: string
+owner: Object
+broadcaster: Object
+leaseTime: integer
+peerTotal: integer
+maxPeers: integer

Peer Tree Manager

-peers: Object

+createTree()

T ccuse»> — — = +destroyTreel)

+getPeer|peerName: Object) +addPeer(peer: Object)

+getOwner() +removePeeripeer: Object)
+getChannelM ame() +handle Disconnect{peer: Object)
+getBroadcaster() +balanceTree()
+destroyChannel() +peerExists{peer: Object)

+reset() A
+addPeer (peer: Object)

Peer Class

+localPeerMame: Object
1”# +remotePeerName: Object
+connected: Boolean

+ID: string

+broadcaster: Object
+setPeerinfolpeerinfo: Object)
+setlD{ID: string)
+setBroadcaster|broadcaster: Oject)

Broadcaster Cla

+currentChanne IName

+getCurrentChannel()

+reset()

+stopStream ()

+closeChannel()

+change Broadcaster(peer: Object)

Overview of p2pcast classes abstracted from the client and server side.

17

18

4.2 Client-Server JSON Interface Specification

Subset of client-server JSON specification with TypeScript interfaces. This is meant to be a guide
demonstrating what kind and how messages between the client and server are designed.

enum MessageEvent {
Connect,
Disconnect,
RequestNewPeer,
MessagePeer

}

enum PeerStateChange {
PeerConnection,
PeerDisconnection,
PeerDegradation

}

enum WebRTCEvent {
Offer,
Answer,
ICECandidates

}

interface Message {
event: MessageEvent;

}

interface ConnectionSetup {
type: WebRTCEvent;
payload: any;

}

interface Peer {
id: string;

}

interface PeerConnectionInfo extends Peer {
upstreamPeers: string[];
downstreamPeers: string[];

interface PeerTree {
peers: { [key: string]: PeerConnectionInfo };

}

interface PeerEvent extends Peer {
event: PeerStateChange;

}

interface Connect extends Message {
cookie: string;

}

interface Disconnect extends Message {

}

interface RequestNewPeer extends Message {
reason?: PeerEvent;
peerTree?: PeerTree;

interface MessagePeer extends Message, ConnectionSetup {
destination: Peer;
data: ConnectionSetup;

19

20

4.3 Sequence Diagrams

WebRTC Connection Handshake

Offer for Peer 2 >

< Offer fI'OerI Peer 1
Answer for Peer 1 >
< Answer from Peer 2
Final answer for Peer 2._
< Final answer from peer 1
WebRTC Media Stream

Peer 2 Server

WebRTC Connection Handshake: The WebRTC three-way handshake. This will abstract the
WebRTC connection setup in the following diagrams.

Establish Stream

EDED

Request peer
equest pee -

Peer selection :

Use Peer 1

<

-4 -
< WebRTC Media Stream >

m

Establish Stream: A new viewer connecting and wishing to view a broadcast for a channel.

WebRTC Connection Handshake

21

Handle Peer Disconnect

_‘WebRTC Media Stream

Server

‘WebRTC Media Stream.
I3 [Peer 2 able to notify server] |

Notify disconnection
I >
[Peer 2 suddenly disconnects without server notification]
Notice stream
disconnection
<«
%E[new peer >
< Send Peer 1 as new source
< WebRTC Connection Handshake >
< WebRTC Media Stream >

Handle Peer Disconnect: How peer disconnections are handled, whether the peer being
disconnected is able to notify the p2pcast application server, or if they disconnect suddenly.

22

Handle Broadcaster Disconnect

m

‘WebRTc Media Stream.
_‘WebRTC Media Slreamh
EII3 [Broadcaster able to notify server]
XNoﬂfy dlsconnection._
[Broadcaster suddenly disconnects without server notification]
Notice stream
disconnection
<4—
Request new peer)
Peer selection "y
<----
Notice stream
disconnection
<+
Request new peer >
Peer selection "y
-
< No channel stream
Notify user m=====y
stream ended !
.‘.---J‘
< No channel stream
Notify user m======y
stream ended E
.‘._-_1

m

Handle Broadcaster Disconnect: p2pcast handling the scenario when the most important peer, the

broadcaster, disconnects.

23

4.4 Other Optional Features

There are several optional features that NP Compete has in mind in addition to the standard expected
functionality of p2pcast. These of course are only suggested features given the chance of additional time.
They are list in no particular priority or importance order.

4.4.1 Mobile Support

Currently Google Chrome has the widest support for the most recent draft specifications of WebRTC.
Although only the desktop version of Chrome has the p2pcast required WebRTC features
implemented, as time progresses iOS and Android flavors of Chrome will likely gain equivalent
functionality.

At this time Google Chrome for some Android versions support having a peer be designated as a
broadcaster only. The option also exists for this mobile broadcaster to select the prefered front or back
facing camera source for broadcasting.

4.4.2 Screen Sharing

Screen sharing is currently supported by Google’s Chrome Canary, which allows you to broadcast your
screen to others. Allowing screen sharing as a video source for broadcasters will be a simple task, but
the eventual goal would to integrate this with simulcasting screen sharing and a webcam. GoToMeeting
from Citrix Online supports screen sharing and serves as an example of this feature’s importance.

4.4.3 Chat

Since the WebRTC implementation in Chrome does not yet fully support audio rebroadcasting, there is
a plan for allowing for alternate communication between the broadcaster and all participants. The
broadcaster would be able to configure whether such an option is allowed for their channel and other
administrative functions related to live chat.

4.4.4 Audio Broadcasting

Audio rebroadcasting support is not yet implemented in Google Chrome due to architectural decisions
within their audio handling framework. The specification, however, does require this feature. Once this
feature is implemented, adding audio support to all streams will be as simple as configuration change.

4.4.5 Mozilla Firefox

Mozilla Firefox has, at the moment, the second most complete implementation for the WebRTC

24

specification. Users should be able to, in the future when Firefox’s WebRTC support catches up, be
able to view broadcast streams and also be able to fully act as a peer by rebroadcasting.

4.4.6 User Registration

User registration would carry immediate benefits. Broadcasters could have better control over their
channels in setting metadata, and also make it more realistic to allow broadcasters to permanently or
semi-permanently claim channel names. In the case of chat, users would allow for better administrative
control. It would also bring value to browsing available channels, as users could rate channels.

4.4.7 Multiple Camera

Broadcasters having the option to broadcast multiple cameras simultaneously would bring enormous use
cases for p2pcast. Such functionality would allow for webinars. And, more excitingly, broadcasters
could stream a concert from multiple angles all at once. Broadcasters should have the option of
choosing which audio stream is the played one (dependent on audio support being implemented in
Chrome), or leaving that option to the viewers. Broadcasters could also rearrange videos in a grid on

the channel page.

If user support were added, this feature could be greatly expanded. Instead of a single broadcaster
owning a channel, a single channel owner could delegate broadcast capabilities to one or more users.
This would allow for separate video streams to be broadcasted from different broadcast sources.

25

5. Ul Mockups

The user interface is designed with simplicity and functionality in mind. Figure 5.1 shows the
broadcaster’s view. On the top right hand corner, the broadcaster can choose to configure the channel
options. The viewer’s view is similar to the broadcaster’s view but without channel controls. In both the
broadcaster and the viewer’s perspective, the video stream is in the middle of the screen. The name of
the current channel will be on top of the video stream. There are also counters that display the current
number of viewers that are watching the stream and the current number of peers that are directly
connected to you. Later there will be implementations of features such as a channel list and descriptions
for each channel.

5.1 Channel Page (Broadcaster)

p2pcast Home Channel £ Configure v

My Stream

Video source:

B Add Video

®33 L4

Figure 5.1: The view page from the broadcast’s point of view.

5.2 Channel Page (Viewer)

p2pcast Home Channel

Streaming currently live

®33 A2

Figure 5.2: The view page on the viewer’s side with automatic connection to a broadcaster.

26

27

5.3 Homepage

p2pcast Home Channels

Stream your live content

Share your lectures, concert, or games with as many as you'd

like. You don't even need to register!

‘ Enter your channel nam

Figure 5.3: Homepage for p2pcast where user can select channel name and begin broadcasting.

