
Vision Statement
Problem Statement

With the explosion of user-generated content being produced in recent years as a result
of the expanding popularity of social networks and online communication, the amount of
attainable knowledge increases every day. At the same time, however, tools to organize
and understand this data have not kept pace with its rate of expansion. As a result, the
semantic meaning of this data is for the most part accessible only to people.

This situation presents an opportunity for software systems to be developed to make
sense of, organize and interpret the data being generated every day by billions of
people, and it is this problem that we aim to solve by focusing on the intriguing
subproblem of geospatial location data. While some messages, tweets, comments and
posts include computer-readable location data, the vast majority do not, even if the
textual body contains words or phrases that to a human observer clearly identify a
location. By developing a system to extract and analyze location information from
plaintext messages, worlds of possible applications are opened – everything from
tracking the spread of infectious diseases, identifying trends in real estate and
urbanization, putting people in touch with others nearby, and countless more possibilities
that depend on a better understanding of location information.

System Goals

We hope to create a system that will be able to take as input unformatted, plaintext,
natural language messages from different sources and, in real time, extract meaningful
and computer readable geospatial data from the input.

Data Extraction
The first step of the system will be to extract important information out of individual
strings of text from social networking sites, blogs, and other websites. Not all text
available has useful information, and to store every single character on these massive
websites into a single database would require an exorbitant amount of storage space.
One of the most difficult tasks of the system will be to parse through text made in
ambiguous sentences and various colloquialisms to identify locations, items of interest,
dates, and other important information while ignoring unimportant information.

Categorization and Creation of Metadata
After extracting information from the web, the next step will be to organize and store
geospatial location, subject, and keyword metadata. Each of this pieces of information
will be categorized and tagged based on their source, date, time, topic, and other
properties.

Identifying Patterns

By juxtaposing data with similar features, the system will be able to identify and predict
the trends.

System Features

Web-Based Interface
Users will be able to view the collected data in raw and organized forms without having
to search through the raw databases.

Data Querying and Reporting
Information will be available in multiple formats. The user will be allowed to specify how
he or she wants to view the data. A search feature will also allow the ability drill-down
into different categories and filter data based on specified tags, dates, and other criteria.

Other Requirements and Constraints

Scalability
As the number and complexity of target data and data sources increase, the efficiency of
the extraction and analysis processes should not be affected. Users should be allowed
to operate on small datasets in the same manner and time that they would for much
larger datasets.

Efficiency
Because the amount of information to be collected and analyzed is virtually endless, the
system’s algorithms must be designed in an intelligent manner. Simple brute force
algorithms would take far too long to execute over such massive amounts of text. In
order for the system to be useful, what it offers needs to be accessible quickly. As more
and more information is poured into the web, the system should refresh efficiently and in
real time.

Technologies

Programming Language: Python
Database: node.JS, MongoDB
Continuous integration: Jenkins
Source Control: Git
Message Broker: RabbitMQ

