

1

Vladimir Adam

Nick Cross

Ryan McGinley

Cesar Polanco

Karanbir Toor

Detailed Design Specifications

for

vTimeSeries

Version 1.0

March 7th, 2013

\

2

Table of Contents

1 vTimeSeries

1.1 Application Overview

1.1.1 Definitions

1.1.2 Launching the WebApp

1.1.3 Exiting the WebApp

1.1.4 Document Overview

1.1.5 Model-View-Presenter

1.2 User Interface

1.2.1 Motivation

1.2.2 Mockup

1.3 Basic Functions and Features

1.3.1 Time Series Analysis

1.3.2 Normalization

1.3.3 Hovering Over Plot Point On Graph

1.3.4 Legend

1.3.5 Displaying More Than One Statistic/Entity On A Graph

1.3.6 Quickfind

1.3.7 Manually Selecting a Time Range

2 Modules

2.1 Overview

2.1.1 Application Starting Point

2.2 GUI

2.2.1 Purpose

2.2.2 Graphs

2.2.3 Layout

2.2.4 Presenter

2.3 Time Series Analysis

2.4 Retriever

2.5 Collector

2.6 Database Interface

3 Design

3.1 Activity Diagram

3.2 Class Diagram

3.3 Advanced Functions and Features

3.3.1 Recommendation

3.4 Dialog Box

3.5 Use Case

3

1 vTimeSeries

1.1 Application Overview

1.1.1 Definitions

API - Application Programming Interface

DB - Database

GWT - Google Web Toolkit

MVP - Model-View-Presenter

TSA - Time Series Analysis

VM - Virtual Machine

WS - Web Services

1.1.2 Launching the WebApp

The app will be launched by loading the corresponding web page. This will allow

the user to access the website without having to download much client-side

code. Most of the application logic will be executed on the server, reducing the

necessary complexity or capacity of the user’s computer.

1.1.3 Exiting the WebApp

The user will exit the app by closing the corresponding tab on the web browser.

Before exiting user will be able to save their current location in the statistical

hierarchy, thereby starting in the same location next they open the app.

1.1.4 Document Overview

The remainder of this paper will document the design of the application. The

motivation behind this is to make abundantly clear the architecture of the app as

well as the thought process that went into each decision. The document will then

go into the detail on the different modules that comprise this system, and will

describe the user at each stage. The interactions of the various modules will be

described in detail. Finally, the document will then show the different users

interacting with the system and trace their steps as they perform various actions.

1.1.5 Model-View-Presenter

The user interface is going to be based on the MVP software pattern. This design

paradigm consists of three modules. The model, an interface defining the data to

be displayed or otherwise acted upon in the user interface. The view, is just a

passive interface that displays the data from the model and sends commands to

the presenter. Lastly, the presenter acts on both the model and view. The

motivation for this is to separate the View from the Model, and have the

4

Presenter act as a mediator between the View and the Model. A change in the

view will be reflected in the presenter who will notify the model. The model will

change accordingly and then notify the presenter which will notify the view. This

design

1.2 User Interface

1.2.1 Motivation

The GUI will be designed to provide an easy and intuitive user interface

encompassing commonly known combinations of GUI widgets. The GUI will be

compact and will allow the user to easily view different configuration of statistics

on any number of hosts/cluster that the user desires.

1.2.2 Mockup

|

|

V

5

|

|

V

6

|

|

V

7

1.3 Basic Functions and Features

1.3.1 Time Series Analysis

We want to identify trends in the data that we can take advantage of. However,

real data also comes with noise so we will first need to smooth the data. There

are many ways to smooth a time series and the best technique really depends on

the type of data.

The simplest smoothing algorithm is a fixed-width sliding average. Where every

point on the time series is replaced by the average of some local range. We will

do this first to clean up the time series. This technique is a good starting point but

leaves many irregularities in the data.

One of the techniques we will experiment with is kernel smoothing. This is like

the fixed-width sliding average but the width size is variable and the local range

8

has a Gaussian weight function applied to the average. This technique is good

for identifying trends in data, but not good for predicting future values.

A disadvantage of the previously mentioned techniques is they tend to flatten the

signal thereby destroying potentially valuable information. The Savitzky–Golay

smoothing filter avoids this problem by using polynomial expansions of the data

and preserving minima/maxima. This approach will be good for predicting future

spikes in the data.

Another trend we will experiment with is exponential smoothing. We believe this

technique is especially promising because it is used in performing time-series

analysis on financial and market data to identify trends and make predictions.

This technique is a moving average with a discrete version of an exponential

function as a weight. The major difference in this technique is it uses all previous

data to compute the smooth curve, whereas the other techniques mentioned

operate in a localized area around each datum in the smooth curve. A potential

pitfall for this technique is some data can have convergence issues and give

erratic behavior.

After identifying a trend for a particular statistic from a particular VM we can store

that trend as a parameter to influence future time-series analysis.

1.3.2 Normalization

The graphs will display units when there is only one statistic selected. However,

when there is more than one statistic is selected to compare the coordinates will

be normalized. For stats like cpu and mem, normalization will be using the total

available resources from the total resource pool. However for stats such as

network i/o we will just use the max value.

1.3.3 Hovering Over Plot Point On Graph

When the cursor is hovering over a point on the line it should display the entity

type of that line, the stat of the line, and the value at that point.

1.3.4 Legend

When there is only one stat and one entity displayed there will be no legend

however when another stat or entity is plotted to the graph a legend for the graph

will appear. The legend will show how the graphs are color coded by displaying

each color with its corresponding entity and stats.

1.3.5 Displaying More Than One Statistic/Entity On A Graph

9

For the majority of time while the user is using the application, the user will be

viewing graphs utilizing time series analysis. The user will have the option to add

statistics to the current graph the user is viewing. This can be done by selecting

the desired statistic on a list labeled Statistics and clicking the specified statistic

then that statistic will remain highlighted. Similarly other entities can be added by

checking the box of the specified entity in the Comparison Tab. Then the legend

will be added to accordingly depending on what is chosen. To get remove an

entity all the user must do is uncheck the box and similarly to remove a stat all

the user must do is click the stat button again to remove the highlighting.

1.3.6 Quickfind

Because of the vast amount of statistics that can be viewed the user will have the

option of using a hierarchical view to quickly navigate to the specified entity page.

By using the + expand symbol you can expand clusters to view hosts and expand

hosts to view vms. There will also be an indicator image next to an entity that is

either being overutilized or underutilized and needs attention.

1.3.7 Manually Selecting a Time Range

The time range is presented on the X axis of all line graphs and is chosen in the

X-Axis Range field. This field has a time range for the user to see with a

maximum range of 24 hours. The Days to be Included field and the Date Range

field will be the days and dates to be included in averaging for the averaged

graph.

1.3.8 Smaller Graphs

For the Cluster page and the Host page there will be a set of 8 smaller graphs

showing the top 4 and bottom 4 utilized hosts and VMs respectively. These

graphs will need to be continuously updated since new data is always being fed

in and the ranking for top 4 and bottom 4 utilized hosts may change with the new

data.

10

2 Modules
2.1 Overview

2.1.1 Application Starting Point

The starting point of our application will be NT_Capstone. This class will

implement GWT’s EntryPoint interface, which requires the implementation of the

onModuleLoad() function. Here we will initialize our Model and Presenter objects.

11

2.2 GUI

2.2.1 Purpose

The purpose of the GUI will be to provide a simple yet comprehensive interface

where the user can see all the necessary information while not being

overwhelmed by clutter of too many unnecessary functionalities. There we will

create objects which will constitute our MVP structure. Each view will have its

own presenter which. The visual tweaking and finishing touches will be added

separately from the code by utilizing Cascading Style Sheets (CSS)

2.2.2 Graphs

We will by using Google Charts Visualization API which lets us display Google

Charts alongside other components of GWT. These graphs will act like GWT

Widgets and can be integrated into the GWT Layout classes. However, because

Google's Visualization API requires an internet connection, the application will

require an internet connection in order to display the Graphs and Charts.

2.2.3 Layout

GWT provides the basic Horizontal and Vertical Layout Panels but also contains

advanced panels such as FlowPanel and SplitLayoutPanel. However, we are

going to use combinations of HorizontalPanels and VerticalPanels to layout all

the individual widgets on the screen.

2.2.4 Presenter

All the Views that make up the GUI will be handled in the Presenters for their

corresponding views, i.e. each main View should have its own presenter which

decouples views from each other and allows for easier event handling.

The presenters will be instantiated in the main application controller,

(NTAppController.java). NTAppController.java will contain a reference to the

model and to the eventBus which will handle events (some custom events as

well) as they are fired by individual presenters. In addition to basic events

provided by GWt such as onClick events, we will create our own events for

specific situations. For instance, clicking a particular button can fire off

AddNewStatistic event.

2.3 Time Series Analysis

The most important module, will use external libraries to process the data collected by

the data parser. This data will be averaged here for the time range and will also smooth

out the line accordingly.

2.4 Retriever

12

We have decided that out of the 200 different statistics, we will be using the following for

its corresponding hardware layer. This will collect all the available entities and all the

available stats for those entities and store them in a DBObject. The DBObject has a

array list of entity objects that stores the entity type and maps the stats to the actual

values.

VM

● cpu.capacity.usage mHZ

● cpu.coreUitilization %

● cpu.demand mHz

● cpu.usage mHz

● mem.capacity.usage KB

● mem.usage KB

● net.usage KB/s

● net.throughout.provisioned KB/s

● disk.capacity KB

● disk.usage KB

● vmap.numVMotion number

Host

● cpu.capacity.usage mHz

● cpu.coreUtilization %

● cpu.usage mHz

● cpu.utilization mHz

● mem.capacity.usage KB

● mem.consumed KB

● mem.usage KB

● net.usage KB/s

● net.throughput.provisioned KB/s

Cluster

● effectivecpu mHz

● effectivemem KB

● (cpufairness) scalar

● (memfairness) scalar

2.5 Collector

The collector will spawn a new retriever for a specified time interval if none is given it

will spawn a new retriever object every 20 seconds which is what VMware considers

“real-time stats.”

2.6 Database Interface

13

The database will be stored using the set function and will be stored with a key pair that

is a time-stamp and entity. Then the values for each of these pair will have a map of

stats that will map a stat key to the actual stat value. These will be set using a DBObject

that passes a list of entity objects and a timestamp so all entities and all the possible

entity's stats are saved to the database.

3 Design
3.1 Activity Diagram

14

3.2 Class Diagram

15

3.3 Advanced Functions and Features

3.3.1 Recommendation

There will be a pop up window that notices on the time series level that 2 VMs

have a difference of a certain delta threshold and if the vms reach their maximum

and minimum are offset for a certain amount of time a vm migration or affinity

recommendation.

3.4 Dialog Box

3.4.1Warnings When Manipulating Statistics or Entities

If the user attempts to remove a statistic or entity from being viewed, and it is the

last one, we will disallow it/pop up a warning indicating that the user is about to

remove the last statistic which will make the graph completely empty.

3.4.2 Warnings When Specifying Date Range

If the user selects a time range that is recording, we will accordingly warn the

user that data he will want to view may not be representative of the the actual

situation and the user may perceive an incorrect representation of the data. The

message will return the date ranges of when there is no data for the specific

request.

3.5 Use Case

The following use case shows the high-level overview of interactions between our

application, model, and the database containing statistics about individual clusters,

hosts, and virtual machines. In it, the user is navigating through the various menus,

starting at the data center level, being able to select from multiple clusters. As the user

narrows down his choices, he selects a particular cluster, then a particular host from the

cluster, and finally, a particular VM from the host.

16

