Chandra’s Example Project

- Online data visualization for IoT sensor data

UC Santa Barbara

Edge Cloud

= Virtual Server
(Store/Forward Data to cloud)

IoT data

DockerHub

Virtual Server @ UCSB
+ Docker, Postgres,
(web frontend + backend)

Public/Private Cloud

IoT data

User login

User auth

Dynamic data vis

Firebase
Chandra’s Example Project

- Online data visualization for IoT sensor data

- Technology Investigations:
 - Virtual Linux server (Edge and cloud) + Docker/Dockerhub
 - Setup and configuration
 - User login support: front end and backend
 - Web front end (html, css, javascript, 3rd party/oauth?)
 - Bootstrap, material design for React w/ bootstrap
 - Backend (firebase)
 - When you should and shouldn’t use firebase
 - Link bootstrap to firebase
 - Time series graphs from local data: Chart.js
 - Dynamic time series graphs
 - GraphQL + Postgresql + Chart.js
 - Connect logged in user to authenticate data access
 - Ingress data to edge cloud server
 - Forward edge data to cloud postgresql DB
Chandra’s Example Project

• Online data visualization for IoT sensor data
• Sprint 1 plan: *(Sprint 1 is 9 days total)*
 – AWS EC2 virtual server tutorial with persistent volume storage
 • **test**: start/stop server, (un-)mount volume, ssh, config Docker/ web backend (below)
 – Docker tutorial: configure/deploy server image: **test**=all team members laptops and EC2 virtual server
 – user login support: front end and backend
 • Bootstrap/React tutorial: **test**=deploy simple website, be able to change it
 – Bootstrap, [material design for React w/ bootstrap](https://material.io)
 • [firebase](https://firebase.google.com) tutorial, link to bootstrap: **test**=simple login page
 • Investigate how to share info on logged in user to remote service
 – Web page static graph: [Chart.js](https://chartjs.org) tutorial: **test**=website with graph w/ fake data (hand coded in javascript)
 – Dynamic time series graph
 • Tutorials + [Integration tutorial: GraphQL Engine + Postgresql+ Chart.js](https://www.graphql.org)
 • **Test**: website that is dynamically updated when new data is added to db
 – PRD work (pbm, innovation, detailed core advance, background, sys arch picture, technologies list), **test** = review by team mate
Chandra’s Example Project

- Online data visualization for IoT sensor data
- Sprint 1 plan: (Sprint 1 = 9 days – breakdown is below in red)
 - AWS EC2 virtual server tutorial with persistent volume storage
 - test: start/stop server, (un-)mount volume, ssh, config Docker/ web backend (below)
 - Docker tutorial: configure/deploy server image: test=all team members laptops and EC2 virtual server
 - user login support: front end and backend
 - Bootstrap/React tutorial: test=deploy simple website, be able to change it
 - Bootstrap, material design for React w/ bootstrap
 - firebase tutorial, link to bootstrap: test=simple login page
 - Investigate how to share info on logged in user to remote service
 - Web page static graph: Chart.js tutorial: test=website with graph w/ fake data (hand coded in javascript)
 - Dynamic time series graph
 - Tutorials + Integration tutorial: GraphQL Engine + Postgresql+ Chart.js
 - Test: website that is dynamically updated when new data is added to db
 - PRD work (pbm, innovation, detailed core advance, background, sys arch picture, technologies list), test = review
 by team mate
 - Trello setup for Sprint 1
Chandra’s Example Project

- Online data visualization for IoT sensor data
- **Sprint 1 backlog (will move to sprint 2)**
 - Connect logged in user to authenticate data access
 - Setup/configure edge server (using docker container for portability)
 - Ingress data to edge cloud server
 - Forward edge data to cloud postgresql DB
 - Features as determined by requirements analysis: user stories and use cases (more on this next Monday)
- Add these to new Sprint 2 board (Backlog)

- [Create burndown](#)