
CS189A Capstone
Fall 2023

Lecture 6: Software Design &
Modularization

• The official statement of what is required of the system developers

• Includes a specification of both user and system requirements

• Defines WHAT the system should do, not HOW it should do it
– Design comes later

• Agile and extreme SWE processes express requirements as
– Use cases – how a system will act
– Or as scenarios called user stories (describe result/benefit of it)

– Both document how the system responds from an external perspective
(when viewed from the outside) – like a black box…

So - we are only interested in describing externally visible behavior

PRD: Product Requirements Document

2

PRDv1: Your Living Requirements Document:
A Shared Google Doc (due tomorrow)

❖ Authors, Team, Project Title

❖ Intro – including problem, innovation, science, core technical advance (2-3
pages)
– Define project specifics, team goals/objectives, background, and

assumptions
❖ System architecture overview

– High level diagram (1 page)
– User interaction and design (1 page)

❖ Requirements (functional and non-functional)
– User stories or use cases (links): 10 for PRDv1 prioritized
– Prototyping code, tests, metrics (5+ user stories): github commits/issues

❖ System models: contexts, sequences, behavioral/UML, state

❖ Appendices
– Technologies employed

3

On-going Process
• Evolving (aka “living”) requirements document

– Identify/learn (and teach each other) the technologies required
– Write user stories in particular; update the requirements as you go:

• Prioritize stories and mark mandatory, important, or desirable
• Assign time estimates to stories; improve your estimation ability over time
• Specify acceptance test for each story – should be in code

• Concurrently as part of Sprint
– Break down stories into tasks (begin design/prototyping process)

• Prioritize tasks
• Assign timings to tasks
• Specify what (code) test(s) are to be used as evidence of task

completion/acceptance
• Each member/developer chooses task, implements, and tests task
• Another member does code review/test and accepts the pull request

– Test is the one specified above (Acceptance)
• When a Story is complete, some member performs story

test/acceptance

PRDv2: due next week

• Authors, Team, Project Title

• Intro: problem, innovation, science, core technical advance
– Define project specifics, team goals/objectives, background, and

assumptions
• System architecture overview

– High level diagram (1 page)
– User interaction and design (1 page)

• Requirements (functional and non-functional)
– User stories or use cases (links): 20+ for PRDv2 prioritized
– Prototyping code, tests, metrics (10+ user stories): github commits/issues

• System models (1+ pages)
– Contexts, interactions, structural, behavioral (UML)
– Use cases, sequencing, event response, system state, classes/objects

• Appendices - Technologies employed
5

Software Design

• We can think of software design in two main phases

– Architectural Design
• Divide the system into a set of modules
• Decide the interfaces of the modules
• Figure out the interactions among different modules

– Detailed Design
• Detailed design for individual modules
• Write the pre and post-conditions for the operations in each

module
• Write pseudo code for individual modules explaining key

functionality

Fundamental Principles

There are some fundamental principles in software engineering:
• Anticipation of Change

– We talked about this a lot in the context of software process
models. The main principle behind agile software development.

• Separation of Concerns
– You can see the use of this principle in the requirements analysis

and specification. For example: separating functional
requirements from performance requirements.

• Modularity
– This is what I will talk about today as it applies to software design

• Iterative (Stepwise) Refinement
– For example separating architectural design from detailed design

• Abstraction
– We will see examples of this when we discuss design patterns

Modularity

• Modularity principle suggests dividing a complex system into simpler
pieces, called modules

• When we have a set of modules we can use separation of concerns
and work on each module separately

• Modularity can also help us to create an abstraction of a modules
environment using interfaces of other modules

Modularization

• According to Parnas
– “... modularization as a mechanism for improving the flexibility and

comprehensibility of a system while allowing the shortening of its
development time.”

• The goals of modularization are to
– reduce the complexity of the software
– and to improve

• maintainability
• reusability
• productivity

Benefits of Modularization

• Managerial (productivity)
– development time should be shortened because several groups

work on different modules with limited need for communication

• Product flexibility (reusability, maintainability)
– it should be possible to make changes to one module without the

need to change others

• Comprehensibility (reducing complexity)
– it should be possible to study the system one module at a time

Modularization

• Gouthier and Pont:
 “A well-defined segmentation of the project effort ensures system

modularity. Each task forms a separate, distinct program module. At
implementation time each module and its inputs and outputs are
well-defined, there is no confusion in the intended interface with
other system modules. At checkout time the integrity of the module
is tested independently ... Finally, the system is maintained in
modular fashion; system errors and deficiencies can be traced to
specific system modules, thus limiting the scope of detailed error
searching.”

Modularization

• A module is a responsibility assignment rather than a subprogram

• Question: What are the criteria to be used in dividing the system into
modules?

Modularization

• In dividing a system into modules we need some guiding principles.
– What is good for a module?
– What is bad for a module?

• There are two notions which characterize good things and bad things
about modules nicely
– Cohesion

• We want highly cohesive modules
– Coupling

• We want low coupling between modules

Cohesion and Coupling

• What is cohesion?
– Type of association among different components of a module
– Cohesion assesses why the components are grouped together in a

module

• What is Coupling?
– A measure of strength of interconnection (the communication

bandwidth, the dependencies) between modules
– Coupling assesses the kind and the quantity of interconnections

among modules

• Good modularization:
– high cohesion and low coupling

• Modules with high cohesion and low coupling lead to less bugs and are
easier to fix

1

3

10

2

9

6

8

7

10

6

7

2

4 5

4 5

1 3

9

8

A

B

C

A

B

C

Bad modularization:
low cohesion, high coupling

Good modularization:
high cohesion, low coupling

Cohesion and Coupling

Types of Cohesion

• There are various informal categorizations of cohesion types in a
module. I will discuss some of them (starting with the ones which are
considered low cohesion)

• WORST: Coincidental cohesion
– Different components are thrown into a module without any

justification, i.e., they have no relation to each other
• Maybe this was the last module where all the remaining

components were put together
– Obviously, this type of cohesion is not good! It basically

corresponds to lack of cohesion.

Types of Cohesion

• BAD: Logical cohesion
– A module performs multiple somewhat related operations one of

which is selected by a control flag that is passed to the module

– It is called logical cohesion because the control flow (i.e. the “logic”)
of the module is the only thing that ties the operations in the module
together

procedure operations (data1, data2, operation)
{
 switch (operation) {
 case ...: // execute operation 1 on data1
 case ...: // execute operation 2 on data2
 }
}

Types of Cohesion

• BAD: Temporal cohesion
– A module performs a set of functions related in time

• For example an initialization module performs operations that
are only related by time

– These operations can be working on different data types
– A user of a module with temporal cohesion can not call different

operations separately

procedure initialize_game()
{
 // initialize the game board
 // set players' scores to 0
}

Types of Cohesion

• Coincidental, logical and temporal cohesion should be avoided.
• Such modules are hard to debug and modify.
• Their interfaces are difficult to understand.

Types of Cohesion

• BETTER: Communicational cohesion
– Grouping a sequence of operations that operate on the same data

in the same module
– Some drawbacks: Users of the module may want to use a subset of

the operations.

procedure operations1and2 (data)
{
 // execute operation 1 on data
 // execute operation 2 on data
}

Types of Cohesion

• GOOD: Functional cohesion
– Every component within the module contributes to performing a

single function
– Before object orientation this was the recommended approach to

modularization.
– No encapsulation between a data type and operations on that data

type

procedure operation1 (data)
{
 // execute operation 1 on data
}

procedure operation2 (data)
 // execute operation 2 on data
}

Types of Cohesion

• BEST: Informational Cohesion
– This term is made up to mean the data and functionality

encapsulation used in object oriented design

• A ranking of (from good to bad) types of cohesion:
informational > functional > communicational > temporal > logical > coincidental

module stack
// definition of the stack data type
procedure initialize() { .. }
procedure pop() { .. }
procedure push() { .. }
procedure top_element() { .. }

High cohesion Low cohesion

Types of Coupling

• Coupling is the type and amount of interaction between modules
• Coupling among modules

– module A and B access to the same global variable
– module A calls module B with some arguments

• Arbitrary modularization will result with tight coupling
– Loosely coupled modules are good, tightly coupled modules are

bad

• If you use only one module you get no coupling. Is this a good idea?
– No! You did not reduce the complexity of the system. You did not

modularize.

Types of Bad Coupling

• Common (or Global) coupling
– Access to a common global data by multiple modules
– Class variables are also a limited form of common coupling, use

them with caution
• This is a bad type of coupling: The interactions among the modules are

through global data so it is very difficult to understand their interfaces
and interactions. It is hard to debug, and maintain such code.

int number_of_students
procedure find_maximum_grade(student_grades)
{
// traverse the array student_grades from 0 to number_of_students
// to find the maximum grade
}
procedure find_minimum_grade(student_grades)
{
// traverse the array student_grades from 0 to number_of_students
// to find the minimum grade
}

Types of Bad Coupling

• Control coupling
– If one module passes an element of control to another module
– For example a flag passed by one module to another controls the

logic of the other module
• This type of code is hard to understand

– It is hard to understand the interfaces among the modules, you
need to look at the functionality to understand the interfaces

call operations (d1, d2, opcode);

procedure operations (data1, data2, operation)
{
 switch (operation) {
 case ...: // execute operation 1 on data1
 case ...: // execute operation 2 on data2
 }
}

Good coupling

• Data coupling
– The interaction between the modules is through arguments passed

between modules
– The arguments passed are homogenous data items

• Data coupling is the best type of coupling

• In the data coupling you should try to pass only the parts of data that is
going to be used by the receiving module
– do not pass redundant parts

Modularization

• Complexity
– A design with complex modules is worse than a design with simpler

modules
– Remember the initial motivation in modularization is to reduce the

complexity
– If your modules are complex this means that you did not modularize

enough
– Modularization means using divide-and-conquer approach to

reduce complexity

Modularization

• Now we will discuss and compare two modularization strategies

• These modularization strategies are both intended to generate
modules with high cohesion and low coupling

– Modularization technique 1: Functional decomposition

– Modularization technique 2: Parnas’s modularization technique

“On the Criteria to be Used in Decomposing Systems into Modules”, Parnas 1972

Modularization: Functional
Decomposition

• Functional decomposition
– Divide and conquer approach
– Use stepwise refinement

1. Clearly state the intended function
2. Divide the function to a set of subfunctions and re-express the

intended function as an equivalent structure of properly
connected subfunctions, each solving part of the problem

3. Divide each subfunction far enough until the complexity of each
subfunction is manageable

• How do you divide a function to a set of subfunctions? What is the
criteria? This approach does not specify the criteria for decomposition.
– Based on how you decompose the system the modules will show

different types of cohesion and coupling

Modularization: Functional
Decomposition

• One way of achieving functional decomposition: Make each step in the
computation a separate module
– Draw a flowchart showing the steps of the computation and convert

steps of the computation to modules
– Shortcoming: Does not specify the granularity of each step

• Another way of achieving functional decomposition is to look at the
data flows in the system
– Represent the system as a set of processes that modify data. Each

process takes some data as input and produces some data as
output.

– Each process becomes a module

• Shortcoming: Both of these approaches produce a network of modules,
not a hierarchy

What about Data Structures?

• Fred Brooks: “Show me your code and conceal your data structures,
and I shall continue to be mystified. Show me your data structures, and
I won’t usually need your code; it’ll be obvious.”

• Eric Stevens Raymond:“Smart data structures and dumb code works a
lot better than the other way around.”

• Functional decomposition focuses on the operations performed on data
• According to Brooks and Raymond data structures should come first

Parnas’s Criteria Modularization

• In a famous paper Dave Parnas proposed a modularization principle
that became one of the core ideas in object oriented design:

 "On the Criteria To Be Used in Decomposing Systems into Modules"
by D. L. Parnas., Communications of the ACM, Volume 15, Issue 12,
December 1972, pp. 1053-1058.

Parnas’s Criteria Modularization:
 Information Hiding

• Every module in the decomposition is characterized by its knowledge
of a design decision which it hides from others.
– Its interface or definition is chosen to reveal as little as possible

about its inner workings
– This principle is called Information Hiding

• Modules do not correspond to steps in the computation

• A data structure, its internal representation, and accessing and
modifying procedures for that data structure are part of a single module

Modularization a la Parnas = Object
Oriented Design

• In his paper on modularization, which pre-dates object-oriented
programming languages, Parnas advocates principles of
object-oriented design and programming
– Information hiding
– Encapsulation: encapsulate data and the functionality
– Abstraction: One module can be a specialization of another module
– Inheritance: One module can inherit functionality from another

module
– Polymorphism: An instance of a module or an instance of its

specialization can be both used by some other module without
rewriting separate code

• All of these features are supported by modern object-oriented
languages such as C++ and Java

What about Efficiency?

• There will be too many procedure calls in the second approach which
may degrade the performance

– Use inline expansion, insert the code for a procedure at the site of
the procedure call to save the procedure call overhead

– This is a common compiler optimization

Modularization Summary

• The goals of modularization are to reduce the complexity of the
software, and to improve maintainability, reusability and
productivity.

• A module is a responsibility assignment rather than a subprogram.
• Good modularization: highly cohesive modules and low coupling

between modules
• One modularization approach:

– Functional decomposition: Draw a flowchart showing the steps of
the computation and convert steps of the computation to modules.

• Better modularization approach:
– Information hiding: Isolate the changeable parts, make each

changeable part a secret for a module. Module interface should not
reveal module’s secrets.

Designing for Change

In another famous paper, Parnas advocates designing for change:

“Designing Software for Ease of Extension and Contraction. IEEE Trans.
Software Eng. 5(2): 128-138 (1979)”

This expands on the information hiding principle and advocates for writing
programs as a family of programs

Designing for Change

Common complaints about software systems:

• It is not possible to deliver an early release with a subset of the
intended capabilities since the subset does not work until everything
works

• Adding a new capability requires rewriting most of the code

• It is not possible to simplify the system and improve its performance by
removing unwanted capability since to take advantage of the
simplification major parts of the system have to be rewritten

• We are not able customize the software system based on the client’s
needs

Software as a Family of Programs

• When you are designing a program you should think that you are
designing a family of programs

• The ways the members of the program family could differ
– They may run on different hardware configurations
– They may perform the same functions but differ in the format of the

input and output data
– They may differ in certain data structures or algorithms because of

differences in available resources
– They may differ in data structures or algorithms because of

differences in the size of the data sets or the relative frequency of of
certain events

– Some users may require only a subset of the services or features
that other users need, and they may not want to be forced to pay
for the resources consumed by the unneeded features

Why Are Some Programs Not Subsetable
or Extensible?

• Excessive information distribution
– Too many parts of the system knows about a particular design

decision.
– If that design decision changes all the parts that “know” about it

have to be changed

• A chain of data transforming components
– If the system is designed as a chain of components each receiving

data from the previous component, processing it and changing the
input format before sending the data to the next program in the
chain.

– If one component in the chain is not needed, it is hard to remove
since the output of its predecessor is not compatible with its
successor

Why Are Some Programs Not Subsetable
or Extensible?

• Components that perform more than one function
– Combining more than one function in the same component.
– The functions can be simple and they may be combined without

difficulty, however, extension and contraction of the resulting
program will be difficult

Designing for Change

• Requirements definition
– Identify possible subsets of components in the system that can

perform a useful function
– Search for the minimal subset that can provide a useful service

and then search for a set of minimal increments which provide
additional functionality

Designing for Change

• Information hiding
– Isolate the changeable parts in modules
– Develop an interface between modules and the rest of the system

that remains valid for all versions
– Crucial steps

• Identify the items that are likely to change, these will be the
“secrets”

• Design intermodule interfaces that are insensitive to the
anticipated changes. The changeable aspects (i.e., the
“secrets”) should not be revealed by the interface

Designing for Change

• The virtual machine concept:
– Bad habits

• Do not think of components as steps in processing, this goal
oriented thinking can be natural but it is bad if you are designing
for change

• Do not think that you are writing programs that perform
transformations from input data to output data

– Think that you are creating a virtual machine by extending the
capabilities given to you by the hardware or the programming
language

• You are extending the data types with additional data types and
you are extending the instructions by providing instructions that
operate on the data types you defined

Design by Contract
• Design by Contract and the language that implements the Design by

Contract principles (called Eiffel) was developed in Santa Barbara by
Bertrand Meyer (he was a UCSB professor at the time)

• Bertrand Meyer won the 2006 ACM Software System Award for the
Eiffel!
– Award citation: “For designing and developing the Eiffel

programming language, method and environment, embodying the
Design by Contract approach to software development and other
features that facilitate the construction of reliable, extendible and
efficient software.”

• The company which supports the Eiffel language is located in Santa
Barbara:
– Eiffel Software (http://www.eiffel.com)

• The material in the following slides is mostly from the following paper:
– “Applying Design by Contract,” B. Meyer, IEEE Computer, pp.

40-51, October 1992.

Dependability and Object-Orientation

• An important aspect of object oriented design is reuse
– For reusable components correctness is crucial since an error in a

module can affect every other module that uses it

• Main goal of object oriented design and programming is to improve
the quality of software
– The most important quality of software is its dependability

• Design by contract presents a set of principles to produce dependable
and robust object oriented software
– Basic design by contract principles can be used in any object

oriented programming language

What is a Contract?

• There are two parties:
– Client which requests a service
– Supplier which supplies the service

• Contract is the agreement between the client and the supplier

• Two major characteristics of a contract
– Each party expects some benefits from the contract and is

prepared to incur some obligations to obtain them
– These benefits and obligations are documented in a contract

document

• Benefit of the client is the obligation of the supplier, and vice versa.

What is a Contract?

• As an example let’s think about the contract between a tenant and a
landlord

Party Obligations Benefits

Tenant Pay the rent at the
beginning of the month.

Stay at the apartment.

Landlord Keep the apartment in
a habitable state.

Get the rent payment
every month.

What is a Contract?

• A contract document between a client and a supplier protects both
sides
– It protects the client by specifying how much should be done to

get the benefit. The client is entitled to receive a certain result.
– It protects the supplier by specifying how little is acceptable. The

supplier must not be liable for failing to carry out tasks outside of
the specified scope.

• If a party fulfills its obligations it is entitled to its benefits
– No Hidden Clauses Rule: no requirement other than the

obligations written in the contract can be imposed on a party to
obtain the benefits

How Do Contracts Relate to Software Design?

• You are not in law school, so what are we talking about?

• Here is the basic idea
– One can think of pre and post conditions of a procedure as

obligations and benefits of a contract between the client (the
caller) and the supplier (the called procedure)

• Design by contract promotes using pre and post-conditions (written as
assertions) as a part of module design

• Eiffel is an object oriented programming language that supports
design by contract
– In Eiffel the pre and post-conditions are written using require and

ensure constructs, respectively

Design by Contract in Eiffel

In Eiffel procedures are written is in the following form:

procedure_name(argument declarations) is
 -- Header comment
require
 Precondition
do
 Procedure body
ensure
 Postcondition
end

Design by Contract in Eiffel
An example:

put_child(new_child: NODE) is
 -- Add new to the children of current node
require
 new_child /= Void
do
 ... Insertion algorithm ...
ensure
 new_child.parent = Current;
 child_count = old child_count + 1
end -- put_child

• Current refers to the current instance of the object (this in Java)
• Old keyword is used to denote the value of a variable on entry to the procedure
• Note that “=“ is the equality operator (== in Java) and “/=“ is the
inequality operator (!= in Java)

The put_child Contract

• The put_child contract in English would be something like the table
below.
– Eiffel language enables the software developer to write this

contract formally using require and ensure constructs

Party Obligations Benefits

Client Use as argument a
reference, say
new_child, to an
existing object of type
Node.

Get an updated tree
where the Current
node has one more
child than before;
new_child now has
Current as its parent.

Supplier Insert new_child as
required.

No need check if the
argument actually points
to an object.

Contracts

• The pre and postconditions are assertions, i.e., they are expressions
which evaluate to true or false
– The precondition expresses the requirements that any call must

satisfy
– The postcondition expresses the properties that are ensured at

the end of the procedure execution

• If there is no precondition or postcondition, then the precondition or
postcondition is assumed to be true (which is equivalent to saying
there is no pre or postcondition)

Assertion Violations

• What happens if a precondition or a postcondition fails (i.e., evaluates
to false)
– The assertions can be checked (i.e., monitored) dynamically at

run-time to debug the software
– A precondition violation would indicate a bug at the caller
– A postcondition violation would indicate a bug at the callee

• Our goal is to prevent assertion violations from happening
– The pre and postconditions are not supposed to fail if the software

is correct
• hence, they differ from exceptions and exception handling

– By writing the contracts explicitly, we are trying to avoid contract
violations, (i.e, failed pre and postconditions)

Assertion Violations

• In the example below, if new_child = Void then the precondition
fails.

• The procedure body is not supposed to handle the case where
new_child = Void, that is the responsibility of the caller

put_child(new_child: NODE) is
 -- Add new to the children of current node
require
 new_child /= Void
do
 ... Insertion algorithm ...
ensure
 new_child.parent = Current;
 child_count = old child_count + 1
end -- put_child

Defensive Programming vs. Design by Contract

• Defensive programming is an approach that promotes putting checks
in every module to detect unexpected situations

• This results in redundant checks (for example, both caller and callee
may check the same condition)
– A lot of checks makes the software more complex and harder to

maintain

• In Design by Contract the responsibility assignment is clear and it is
part of the module interface
– prevents redundant checks
– easier to maintain
– provides a (partial) specification of functionality

Class Invariants

• A class invariant is an assertion that holds for all instances (objects)
of the class
– A class invariant must be satisfied after creation of every instance

of the class
– The invariant must be preserved by every method of the class,

i.e., if we assume that the invariant holds at the method entry it
should hold at the method exit

– We can think of the class invariant as conjunction added to the
precondition and postcondition of each method in the class

• For example, a class invariant for a binary tree could be (in Eiffel
notation)

invariant
 left /= Void implies (left.parent = Current)
 right /=Void implies (right.parent = Current)

Design by Contract and Inheritance

• Inheritance enables declaration of subclasses which can redeclare
some of the methods of the parent class, or provide an
implementation for the abstract methods of the parent class

• Polymorphism and dynamic binding combined with inheritance are
powerful programming tools provided by object oriented languages
– How can the Design by Contract can be extended to handle these

concepts?

ClassA

someMethod()

ClassB

Client

someMethod()

Inheritance: Preconditions

• If the precondition of the
ClassB.someMethod is stronger
than the precondition of the
ClassA.someMethod, then this is
not fair to the Client

• The code for ClassB may have
been written after Client was
written, so Client has no way of
knowing its contractual
requirements for ClassB

ClassA

someMethod()

ClassB

Client

someMethod()

Inheritance: Postconditions

• If the postcondition of the
ClassB.someMethod is weaker
than the postcondition of the
ClassA.someMethod, then this is
not fair to the Client

• Since Client may not have
known about ClassB, it could
have relied on the stronger
guarantees provided by the
ClassA.someMethod

Inheritance

• Eiffel enforces the following
– the precondition of a derived method to be weaker
– the postcondition of a derived method to be stronger

• In Eiffel when a method overwrites another method the new declared
precondition is combined with previous precondition using disjunction

• When a method overwrites another method the new declared
postcondition is combined with previous postcondition using
conjunction

• Also, the invariants of the parent class are passed to the derived
classes
– invariants are combined using conjunction

ClassA

ClassB

Client

someMethod()

someMethod()

In ClassA:
invariant
 classInvariant
someMethod() is
require
 Precondition
do
 Procedure body
ensure
 Postcondition
end

In ClassB which is derived from ClassA:
invariant
 newClassInvariant
someMethod() is
require
 newPrecondition
do
 Procedure body
ensure
 newPostcondition
end

The precondition of ClassB.aMethod is defined as:
 newPrecondition or Precondition

The postcondition of ClassB.aMethod is defined as:
 newPostcondition and Postcondition

The invariant of ClassB is
 classInvariant and newClassInvariant

Dynamic Design-by-Contract Monitoring

• Enforce contracts at run-time

• A contract
– Preconditions of modules

• What conditions the module requests from the clients
– Postconditions of modules

• What guarantees the module gives to clients
– Invariants of the objects

• Precondition violation, the client is to blame
– Generate an error message blaming the client (caller)

• Postcondition violation, the server is to blame
– Generate an error message blaming the server (callee)

Design by Contract

• Java Modeling Language (JML) is an annotation language for Java
that enables specification of contracts for Java classes as
annotations. There contract checking tools built based on JML

• Design by contract C++ is an implementation of Eiffel’s design by
contract approach for C++

• There have been tools implemented for design by contract checking
(statically) and monitoring (dynamically)
– ESC/Java: Static verification of pre, post-condition and class

invariant violations
– jContractor (developed at UCSB): Dynamic contract monitoring

for detecting pre, post-condition and invariant violations at
runtime

Writing Contacts in UML+OCL

• Object Constraint Language (OCL) is a specification language that
supports specification of contracts (i.e., pre, post conditions and
invariants) in UML class diagrams.

• OCL constraints have formal syntax and semantics
– their interpretation is unambiguous

• OCL can be used to add precision to UML diagrams

• There are tools which check OCL constraints.:
– USE (A UML-based Specification Environment)

https://sourceforge.net/projects/useocl/
– Enables analysis of UML diagrams before implementation

Writing Contracts in UML + OCL

LoyaltyAccount

points: Integer

earn(i: Integer)

burn(i: Integer)

isEmpty(): Boolean

{ points >= 0 }

<<postcondition>>
points = points@pre - i

class invariant

postcondition for burn operation
<<postcondition>>
result = (points=0)

<<precondition>>
points >= i and i >= 0

precondition for burn operation

<<postcondition>>
points = points@pre + i

<<precondition>>
i >= 0

