
CS189A Capstone
Fall 2023

Lecture 5: UML

Announcements

Attendance: It is crucial for teams to attend both the lectures and
the discussion sections and check in with the instructor and the
TAs. This is a requirement for the course. You can use the lecture
and discussion time to have team meetings and work on the project
while the instructor and the TAs are meeting with other teams.

Use of code generation tools: You can use code generation tools if
it is helpful for your project. You have to disclose it. You are still
responsible in testing the system and the functionality is
implemented correctly.

You can NOT use AI tools for generating the documents (such as
PRD) since we want you to practice it in the course.

• The official statement of what is required of the system developers

• Includes a specification of both user and system requirements

• Defines WHAT the system should do, not HOW it should do it
– Design comes later

• Agile and extreme SWE processes express requirements as
– Use cases – how a system will act
– Or as scenarios called user stories (describe result/benefit of it)

– Both document how the system responds from an external perspective
(when viewed from the outside) – like a black box…

So - we are only interested in describing externally visible behavior

PRD: Product Requirements Document

3

PRDv1: Your Living Requirements Document:
A Shared Google Doc (due tomorrow)

❖ Authors, Team, Project Title

❖ Intro – including problem, innovation, science, core technical advance (2-3
pages)
– Define project specifics, team goals/objectives, background, and

assumptions
❖ System architecture overview

– High level diagram (1 page)
– User interaction and design (1 page)

❖ Requirements (functional and non-functional)
– User stories or use cases (links): 10 for PRDv1 prioritized
– Prototyping code, tests, metrics (5+ user stories): github commits/issues

❖ System models: contexts, sequences, behavioral/UML, state

❖ Appendices
– Technologies employed

4

On-going Process
• Evolving (aka “living”) requirements document

– Identify/learn (and teach each other) the technologies required
– Write user stories in particular; update the requirements as you go:

• Prioritize stories and mark mandatory, important, or desirable
• Assign time estimates to stories; improve your estimation ability over time
• Specify acceptance test for each story – should be in code

• Concurrently as part of Sprint
– Break down stories into tasks (begin design/prototyping process)

• Prioritize tasks
• Assign timings to tasks
• Specify what (code) test(s) are to be used as evidence of task

completion/acceptance
• Each member/developer chooses task, implements, and tests task
• Another member does code review/test and accepts the pull request

– Test is the one specified above (Acceptance)
• When a Story is complete, some member performs story

test/acceptance

PRDv2: Your Living Requirements Document: A
Shared Google Doc (due in 2 weeks)
• Authors, Team, Project Title

• Intro: problem, innovation, science, core technical advance
– Define project specifics, team goals/objectives, background, and

assumptions
• System architecture overview

– High level diagram (1 page)
– User interaction and design (1 page)

• Requirements (functional and non-functional)
– User stories or use cases (links): 20+ for PRDv2 prioritized
– Prototyping code, tests, metrics (10+ user stories): github commits/issues

• System models (1+ pages)
– Contexts, interactions, structural, behavioral (UML)
– Use cases, sequencing, event response, system state, classes/objects

• Appendices - Technologies employed
6

UML (Unified Modeling Language)

• Combines several visual specification techniques
– use case diagrams, component diagrams, package diagrams,

deployment diagrams, class diagrams, sequence diagrams,
collaboration diagrams, state diagrams, activity diagrams

• Based on object oriented principles and concepts
– encapsulation, abstraction
– classes, objects

• Semi-formal
– Precise syntax but no formal semantics
– There are efforts in formalizing UML semantics

• There are tools which support UML
– Can be used for developing UML models and analyzing them

Examples for UML Tool Support

You can find a list of tools here:
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
• Microsoft Visio has support for UML shapes diagram drawing
• IBM’s Rational Rose is a software development tool based on UML
• ArgoUML is an open source tool for developing UML models

– https://github.com/argouml-tigris-org/argouml
Others:

https://github.com/ModelioOpenSource/Modelio
https://www.lucidchart.com/pages/
http://www.visual-paradigm.com/solution/freeumldesigntool/
http://yuml.me

USE is an open source tool which supports UML class diagrams and
Object Constraint Language

– https://sourceforge.net/projects/useocl/

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://github.com/ModelioOpenSource/Modelio
https://www.lucidchart.com/pages/
http://www.visual-paradigm.com/solution/freeumldesigntool/
http://yuml.me
https://sourceforge.net/projects/useocl/

UML References

• There are lots of books on UML. The ones I used are:
– “UML Distilled,” Martin Fowler

• The examples I use in this lecture are from this book
– “Using UML,” Perdita Stevens
– “UML Explained,” Kendall Scott
– “UML User Guide,” Grady Booch, James Rumbaugh, Ivar Jacobson

• The Object Management Group (OMG, a computer industry
consortium) defines the UML standard
– The current UML language specification is available at:

http://www.uml.org/

UML

• UML can be used in all phases of software development
– specification of requirements, architectural design, detailed design

and implementation

• There are different types of UML diagrams for specifying different
aspects of software:
– Functionality, requirements

• Use-case diagrams
– Architecture, modularization, decomposition

• Class diagrams (class structure)
• Component diagrams, Package diagrams, Deployment

diagrams (architecture)
– Behavior

• State diagrams, Activity diagrams
– Communication, interaction

• Sequence diagrams, Collaboration diagrams

UML Class Diagrams

• Class diagram describes
– Types of objects in the system
– Static relationships among them

• Two principal kinds of static relationships
– Associations between classes
– Subtype relationships between classes

• Class descriptions show
– Attributes
– Operations

• Class diagrams can also show constraints on associations

UML Class Diagrams

• Class diagrams can be used at different stages of development
– For requirements specification, for design specification, and for

implementation

• In requirements specification class diagrams can be used to model real
world objects or concepts

• In design specification it can be used to specify interfaces and classes
that will be implemented in an object oriented program

• In implementation they can be used to show the structure of the
software by showing the relationships among different classes

Classes

• A class is represented as a three-part box
• Class Name
• Attributes

– At conceptual level it is a piece of information associated with the
class that can be accessed and possibly modified

– Corresponds to a field at the implementation level
– Difference from association: navigability is from class to attribute

(not both ways as in association)
• Operations

– The processes the class can carry out (methods at implementation
level)

– Basic operations (such as getValue) on attributes can be omitted
(they can be inferred)

Classes

Customer

name
address

Class Name

Attributes

Operations +creditRating():String

Visibility:
public + (default) any outside class with visibility to the given class can use the feature
protected # any descendant of the class can use the feature
private – only the class itself can use the feature

For abstract classes, class name is
written in italic: Customer

Classes
Attribute syntax: visibility name[multiplicity] : type = initial-value { property-string }

can be:
changeable (is modifiable)
addOnly (for collections, items can be
added but cannot be removed)
frozen (no modification is allowed)

Operation syntax: visibility name (parameter-list) : return-type { property-string }

can be:
isQuery (does not change state of the object)
sequential (should not be called concurrently)
guarded (like synchronized in Java)
concurrent (can be executed concurrently)

Parameters can be marked as:
in: input parameter (cannot be modified)
out: output parameter
inout: an input parameter that can be modified

Example: − accountName [0..1] : String {changeable}

Example: + getAccountName (number : Integer) : String {isQuery}

Associations

Associations are shown as lines between classes
• An association shows a relationship between

instances of two classes
– Each association has two roles (one for each

direction)
– A role can be explicitly named with a label
– Roles have multiplicity showing how many

objects participate in the relationship
– Associations can have multiplicities

• A fixed value (such as 1 or 3)
• Many denoted by * (unlimited number, 0

or more)
• A range of values 0..1 or 3..*
• A set of values 2,4,8

Order
dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

Product Order
quantity: Int
price: Money
isSatisfied: Bool

1

1..*

Association

Role Name

Ordered
Product

Multiplicity:
1 or more

Generalization

 Generalization is used to show
subtyping between classes
– Subtype is a specialization of the

supertype
– Subtype can be substituted for the

supertype
– Subtype inherits the interface
– Subtype inherits the operations

Corporate
Customer

contactName
creditRating
creditLimit

remind()
billForMonth(Int)

Customer

name
address

creditRating():String

Personal
Customer

creditCardNumber

indicates
generalization

Constraints
• Constraints can be used to represent further restrictions on

associations or classes
• Constraints are stated inside braces {}

– Object Constraint Language (OCL) is a formal language for
specifying constraints

Order
dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

{ if Order.customer.creditRating() = “poor”
 then Order.isPrepaid = true }

A constraint
for the Order class

Customer

name
address

creditRating():String

11..*

Going from one class to another by following
the association links is called navigation

Example Class Diagram

Order
dateReceived
isPrepaid
number: String
price: Money

dispatch()
close()

Product Order
quantity: Int
price: Money
isSatisfied: Bool

1

1..*
Ordered
Product

Constraint
for order class

Product1..* 1

Corporate
Customer

contactName
creditRating
creditLimit

remind()
billForMonth(Int)

Customer

name
address

creditRating():String

Personal
Customer

creditCardNumber

indicates
generalization

11..*

Employee

0..1

1..*
Sales
Rep

{creditRating()=“poor”}
indicates that credit
rating is always
set to poor for a
Personal Customer

{ if Order.customer.creditRating() = “poor”
 then Order.isPrepaid = true }

Aggregation and Composition
 Aggregation is a part-of relationship

 Composition is also a part-of relationship, but part and whole
created and destroyed together

Order

Billing
Information

Shipping
Information

1

1

1

1

Book

1

1..*

shows
aggregation

shows
composition

Association Classes

• Adds attributes and operations to an association
– Allows exactly one instance of the association class between any

two objects
• Can use an actual class instead if you need more instances

PersonCompany
0..* 1..*

Job
description
dateHired
salary

employeeemployer

Sequence Diagrams

• A sequence diagram shows a particular sequence of messages
exchanged between a number of objects

• Sequence diagrams also show behavior by showing the ordering of
message exchange

• A sequence diagram shows some particular communication sequences
in some run of the system
– it is not characterizing all possible runs

Sequence Diagrams

• Sequence diagrams can be used in conjunction with use-cases
– At the requirements phase they can be used to visually represent

the use cases
– At the design phase they can be used to show the system’s

behavior that corresponds to a use-case

• During the testing phase sequence diagrams from the requirements or
design phases can be used to generate test cases for the software
product

• Sequence diagrams are similar to MSCs (Message Sequence Charts)
which are a part of SDL(Specification and Description Language) and
have formal semantics

Components of Sequence Diagrams

• Object (an instance of a
class)
– shown as a box at the

top of a vertical dashed
line

– instance syntax
instanceName:ClassName

• Lifeline
– represents time flow

:OrderEntryWindow

instance name
can be omitted
(means anonymous
instance)

Object

Lifeline

Components of Sequence Diagrams
• Messages

– communication between
objects

– correspond to method calls at
the implementation level

• Special message types
– self-delegation
– return

• show returns only if it adds
to clarity

– <<create>>
– <<destroy>>

:ProductOrder

Return

:StockItem

Message

Self-delegation

check()

needsToReorder()

Denotes procedure call (control flow passes from caller to callee)
Denotes interaction among two threads of control (no transfer of control)

Components of Sequence Diagrams
• Two kinds of control

information:

– message conditions
• message is sent only

if the condition is true

– iteration marker: *
• message sent to

multiple receiver
objects

:ProductOrder :StockItem

check()

:Order

*prepare()

Iteration

[check=“true”]
remove()message

condition

Example Sequence Diagram

:ProductOrder :StockItem

check()

:Order

*prepare()

[check=“true”]
remove()

:OrderEntryWindow

prepare()

:ReorderItem

:DeliveryItem

needsToReorder()

<<create>>

[check=“true”]
<<create>>

[needsToReorder=“true”]

Sequence diagrams

• Show conditional behavior on separate diagrams to keep them
understandable
– for example for a use case you can give the basic path as one

sequence diagram and have separate sequence diagrams for
alternative paths or exceptions

• Use sequence diagrams to show the behavior of several objects within
a use case
– use a state diagram when you want to show the behavior of an

object across many use cases

Sequence Diagrams
• Focus of control (or activation)

can be shown in sequence
diagrams as a thin rectangle put
on top of the lifeline of an object

• Shows the period of time during
which the given object is in
control of the flow
– From an implementation point

of view, you can think of it as
showing how long an
activation record stays in the
control stack

• It is optional to use focus of
control rectangles in a sequence
diagram
– use it when it adds to clarity

:ProductOrder :StockItem

check()

:Order

*prepare()

Iteration

[check=“true”]
remove()message

condition

focus of control
or activation

lifeline

Sequence Diagram Frames

:Transaction :Account

amount

:Bank

getAmount()

getBalance()

balance

alt

[balance>=amount]

[else]

updateAccount()

insufficientFund()

• Frames can be used to
specify conditional behavior
(as seen in the example),
loops, optional behavior etc.
in sequence diagrams

Collaboration (Communication) Diagrams

• Collaboration diagrams (aka Communication diagrams) show a
particular sequence of messages exchanged between a number of
objects
– this is what sequence diagrams do too!

• Use sequence diagrams to model flows of control by time ordering
– sequence diagrams can be better for demonstrating the ordering of

the messages
– sequence diagrams are not suitable for complex iteration and

branching

• Use collaboration diagrams to model flows of control by organization
– collaboration diagrams are good at showing the static connections

among the objects while demonstrating a particular sequence of
messages at the same time

Example Sequence Diagram

:ProductOrder :StockItem

check()

:Order

*prepare()

[check=“true”]
remove()

:OrderEntryWindow

prepare()

:ReorderItem

:DeliveryItem

needsToReorder()

<<create>>

[check=“true”]
<<create>>

[needsToReorder=“true”]

Corresponding Collaboration Diagram

:ProductOrder :StockItem

:Order

:OrderEntryWindow

:ReorderItem

:DeliveryItem

1:prepare()

1.1:*prepare()

1.1.1:check()
1.1.2:[check==true]remove()

1.1.2.1:needsToReorder()

1.1.2.2:new

1.1.3:[check==true]new

message

object

link sequence number

Sequence numbers are used
to show the time ordering among
the messages

State Diagrams (Statecharts a la UML)

• State diagrams are used to show possible states a single object can
get into
– shows states of an object

• How object changes state in response to events
– shows transitions between states

• UML state diagrams are a variation of Statecharts
– “A Visual Formalism for Complex Systems,” David Harel, Science

of Computer Programming, 1987
– Statecharts are basically hierarchical state machines
– Statecharts have formal semantics

State Diagrams

• State diagrams are used to show possible states a single object can
get into
– shows states of an object

• How object changes state in response to events
– shows transitions between states

• Uses the same basic ideas from statecharts and adds some extra
concepts such as internal transitions, deferred events etc.

State Diagrams

• Hierarchical grouping of states
– composite states are formed by grouping other states
– A composite state has a set of sub-states

• Concurrent composite states can be used to express concurrency
– When the system is in a concurrent composite state, it is in all of its

substates at the same time
– When the system is in a normal (non-concurrrent) composite state,

it is in only one of its substates
– If a state has no substates it is an atomic state

• Synchronization and communication between different parts of the
system is achieved using events

State Diagrams: Transitions

• Transitions consist of
– source state and target states: shown by the arrow representing

the transition
– trigger event: the event that makes the transition fire, for example

it could be receipt of a message
– guard condition: a boolean expression that is evaluated when the

trigger event occurs, the transition can fire only if the guard
condition evaluates to true

– action: an executable atomic computation that can directly act on
the object that owns the state machine or indirectly on other objects
that are visible to the object such as sending a message

trigger-event[guard-condition]/action
source state target state

State Diagrams: States

• States are represented as rounded boxes which contain:
– the state name
– and the following optional fields

• entry and exit actions: entry and exit actions are
executed whenever the state is entered or exited,
respectively

• internal transitions: internal transitions do not activate
the entry and exit actions (different than self-transitions
which activate the entry and exit actions).

• activities: Typically, once the system enters a state it
sits idle until an event triggers a transition. Activities help
you to model situations where while in a state, the object
does some work that will continue until it is interrupted
by an event

• deferred events: If an event does not trigger a transition
in a state, it is lost. In situations where you want to save
an event until it triggers a transition, use deferred events

State Diagrams: States

Tracking

entry / setMode(on Track)
exit / setMode(off Track)
newTarget / tracker.Acquire()
do / followTarget
selfTest / defer

entry action

exit action

internal transition

activity

deferred event

Note that, “entry”, “exit”, “do”, and “defer” are keywords

State Diagrams

Checking

do / checkItem

/ getFirstItem

shows the initial (default) state

cancelled

getNextItem
[not all items checked]

shows the final state

initial and final states: shown as filled black circle
and a filled black circle surrounded by an unfilled circle, respectively

State Diagram Example: States of an
Order object

Checking

do/checkItem

/ getFirstItem

getNextItem
[not all items checked]

Dispatching

do/initiate
 Delivery

Waiting

Cancelled

Delivered

itemsReceived
[some items not in stock]

[all items checked and
some items not in stock]

itemReceived
[all items available]

[all items checked and
 all items available]

cancelled

cancelled

cancelled

State Diagrams: Superstates

Checking

do/checkItem

/ getFirstItem

getNextItem
[not all items checked]

Dispatching

do/initiate
 Delivery

Waiting

Cancelled Delivered

itemsReceived
[some items not in stock]

[all items checked and
some items not in stock]

itemReceived
[all items available]

[all items checked and
 all items available]

cancelled

Active

Active is a superstate
with substates Checking,
Waiting and Dispatching

State Diagrams: Concurrent states

• Payment authorization is done concurrently with the order processing

Authorizing

do/check
 Payment

Rejected

Authorized

Delivered

[payment OK]

[payment not OK]

State Diagrams: Concurrent States

Checking Dispatching

Waiting

Authorizing Authorized

Delivered

Cancelled

Rejected[payment not OK]

cancelled

this transition
can only be taken
after both concurrent
states reach their
final states

State Diagrams

• Good at describing behavior of an object across several use-cases

• Use them to show the behavior of a single object not many objects
– for many objects use interaction diagrams

• Do not try to draw state diagrams for every class in the system, use
them to show interesting behavior and increase understanding

Activity Diagrams

• Activity diagrams show the flow among activities and actions
associated with a given object using:
– activity and actions
– transitions
– branches
– merges
– forks
– joins

• Activity diagrams are similar to SDL state diagrams, SDL state
diagrams have formal semantics

• Activity diagrams are basically an advanced version of flowcharts

Activity Diagrams

• Activity
– represents a task that has to be performed, a non-atomic execution

within a state machine
– from an implementation perspective it can represent a method

• Action
– an atomic computation that changes the state of the system or

returns a value

Activity Diagrams

• When an activity or action is
completed the control passes
immediately to the next action
or activity

• Transitions can have guard
conditions

• Multiple trigger symbol * is used
to show iteration

Receive Supply

Choose Outstanding
Order Item

Assign Goods
in Order

* for each chosen
order item

action or
activity

transition

initial state

Activity Diagrams: Branches
• Conditional branches

– correspond to if-then-else or
switch statements at the
implementation level

• a branch is shown as a diamond
• a branch can have one incoming

transition and two or more outgoing
• the guard conditions on different

outgoing transitions should not
overlap to prevent nondeterminism

• guard conditions on different
outgoing transitions should cover
all the possibilities so that the
control flow does not get stuck at
the branch

Authorize
Payment

Cancel OrderDispatch Order

[succeeded]

[failed]

branch

guard
expressions

Activity Diagrams: Forks and Joins
• Forks and joins are used to model

concurrent execution paths
• They can be used to express

parallelism and synchronization
– forks create concurrent threads
– joins merge different threads

Receive Order

Check Order
Items

Dispatch
Order

Authorize
Payment

fork

join

two threads are executing
concurrently

Receive Order

Check Order
Item

Dispatch
Order

Authorize
Payment

Cancel Order

Add Remainder
to Stock

[succeeded]

[failed]
Assign to Order

ReceiveSupply

Choose Outstanding
Order Items

Assign to
Order

* for each
chosen
order item

[in stock]

*for each
order item

[need to reorder]

Reorder
item

[all outstanding order
items filled]

[stock assigned to all order items
and payment authorized]

Order
Processing

Finance Stock
Manager

vertical lines
are used to separate
“swimlanes”
to show which
activities are handled
by which part of the
system

Architecture Specification

• The basic concepts in specification of software architecture are:
– Components: Components represent either major computational

elements or data stores. They are usually represented with boxes in
visual representation of architectures.

– Connectors: Connectors represent interactions among
components. They are usually represented as lines in visual
representations

• Most architecture specification languages support
– hierarchical specification where one component can contain a

sub-architecture of components
– specification of component interfaces
– connectors that connect component interfaces
– both graphical and textual specification of systems that consist of

components and connectors
– specification of additional constraints on components and

connectors

UML Component Diagrams

• Components

• Interfaces
– Provided interfaces
– Required interfaces

• Ports
– Used to group interfaces

• Assembly connector
– Connects a required interface to a provided interface

• Delegation connector
– Used for showing internal structure of a component. Connects the

handling part to a provided interface or requiring
part to a required interface

• Dependencies
– Show dependencies

Server

Server

a port with one
provided and one
required interface

indicates that
Server is a
component

delegation edges

dependency edge

Client Server Architecture

Client Server

Components

Assembly connector

In addition to this diagram, the architecture specification should
• Explain the basic functionality of the Server and the Client

– What do they do? What do they compute? What do they store?
• Explain the type of the connector

– Is it an RPC connection or is it a socket connection, etc.?
• Explain the contents of the data (messages) exchanged between the

Client and the Server

Ports

Interfaces

Request

UML Diagrams

• Functionality, requirements
– use case diagrams

• Architecture, modularization, decomposition
– class diagrams (class structure)
– component diagrams, package diagrams, deployment

diagrams (architecture)

• Behavior
– state diagrams, activity diagrams

• Communication, interaction
– sequence diagrams, collaboration diagrams

How do they all fit together?

• Requirements analysis and specification
– use-cases, use-case diagrams, sequence diagrams

• Design and Implementation
– Component diagrams, package diagrams and deployment

diagrams can be used to show the high level architecture
– Class diagrams can be used for showing the decomposition of the

design
– Activity diagrams can be used to specify behaviors described in use

cases
– State diagrams are used to specify behavior of individual objects
– Sequence and collaboration diagrams are used to show interaction

among different objects
– Use cases and sequence diagrams can be used to derive test

cases

