
UC Santa Barbara

CS189A Capstone
Fall 2023

Lecture 4: Requirements Specification

UC Santa Barbara• The official statement of what is required of the system developers
• Includes a specification of both user and system requirements

• Defines WHAT the system should do, not HOW it should do it
– Design comes later

• Agile and extreme SWE processes express requirements as
– Use cases – how a system will act
– Or as scenarios called user stories (describe result/benefit of it)

– Both document how the system responds from an external perspective
(when viewed from the outside) – like a black box…

So - we are only interested in describing externally visible behavior

PRD: Product Requirements Document

2

UC Santa Barbara

PRDv1: Your Living Requirements Document:
A Shared Google Doc (due next week)

❖ Authors, Team, Project Title
❖ Intro – including problem, innovation, science, core technical

advance (2-3 pages)
– Define project specifics, team goals/objectives, background, and

assumptions
❖ System architecture overview

– High level diagram (1 page)
– User interaction and design (1 page)

❖ Requirements (functional and non-functional)
– User stories or use cases (links): 10 for PRDv1 prioritized
– Prototyping code, tests, metrics (5+ user stories): github commits/issues

❖ System models: contexts, sequences, behavioral/UML, state
❖ Appendices

– Technologies employed

3

UC Santa Barbara

On-going Process
• Evolving (aka “living”) requirements document

– Identify/learn (and teach each other) the technologies required
– Write user stories in particular; update the requirements as you go:

• Prioritize stories and mark mandatory, important, or desirable
• Assign time estimates to stories; improve your estimation ability over time
• Specify acceptance test for each story – should be in code

• Concurrently as part of Sprint
– Break down stories into tasks (begin design/prototyping process)

• Prioritize tasks
• Assign timings to tasks
• Specify what (code) test(s) are to be used as evidence of task

completion/acceptance
• Each member/developer chooses task, implements, and tests task
• Another member does code review/test and accepts the pull request

– Test is the one specified above (Acceptance)
• When a Story is complete, some member performs story test/acceptance

UC Santa Barbara

Requirements Engineering

• Process of establishing
the services that the customer requires from a system and
the constraints under which it operates and is developed
– May range from a high-level abstract statement of a service or

of a system constraint to a detailed mathematical functional
specification

– Precisely stated, unambiguous
• User requirements

– Statements in natural language plus diagrams of the services
the system provides and its operational constraints. Written for
customers

• System requirements
– A structured document setting out detailed descriptions of the

system’s functions, services and operational constraints.
Defines what should be implemented so may be part of a
contract between client and contractor 5

UC Santa Barbara

Software Requirements

• Brooks in “No Silver Bullet” paper says:
 The hardest single part of building a software system is

deciding precisely what to build. No other part of the conceptual
work is as difficult as establishing the detailed technical
requirements ... No other part of the work so cripples the
resulting system if done wrong. No other part is as difficult to
rectify later.

• Developers of the early Ballistic Missile Defense System observed
[Alford, IEEE TSE, 1977]
 In nearly every software project that fails to meet performance

and cost goals, requirements inadequacies play a major and
expensive role in project failure

• In mission-critical defense systems US government identifies
requirements as a major problem source in two thirds of the
systems examined [US General Accounting Office, 1992]

• Other studies on projects in aerospace industry and NASA also
found requirements to be a critical software development problem

UC Santa Barbara

Requirements errors are costly to fix late!

Stage Relative Repair Cost

Requirements 1-2

Design 5

Coding 10

Unit Test 20

System Test 50

Maintenance 200

Relative cost to repair a requirements error in different stages of software life-cycle
(cost increases exponentially)

UC Santa Barbara

• Requirements reviews
– Systematic manual analysis of the requirements.
– Review/commit changes to repository as part of workflow

• Multiple team members OK it before committing
• All team members get notification when its updated

• Prototyping
– Using an executable model of the system to check

requirements.
• Test-case generation

– Developing tests for requirements to check testability.
– Your test cases / acceptance tests should be github commits

Requirements Validation Techniques

UC Santa Barbara

Software Requirements

• Software Requirements Specification:
– Specification of a particular software product in a specific

environment

• Basic goal of the software requirements specification is to
specify what the software must do. To achieve this goal:
– Understand precisely what is required of the software
– Communicate the understanding of what is required to all the

parties involved in the development
– Provide a means for controlling the production to ensure

that the final system satisfies the requirements (including
managing the effects of changes)

UC Santa Barbara

What are included in software
requirements
• Functionality: What is the software supposed to do?

– Example: The software product shall sort a set of integers in
ascending order. The software product shall write the sorted
set of integers to an output file in the ASCII format. In the
output file each integer shall be separated by a blank space.

• External Interfaces: How does the software interact with
people, the system’s hardware (there may be a hardware
component within the system), other hardware and other
software?
– Example: The software product shall read the set of integers

from an ASCII file.
• We also have to specify the format of the input file and

how the name of the file will be given.

UC Santa Barbara

What shall be in Software Requirements?

• Performance: What is the speed, availability, response time,
recovery time of various software functions, etc.?
– Example: For the input files with less than 1000 integers the

software product shall produce the output file within 2
seconds.

• Design constraints imposed on an implementation: Are
there any required standards, implementation language
restrictions, resource limits, operating environment(s) etc.?
– Example: The software product shall run on PCs that run

Linux operating system.
• We should also specify which version of Linux, what type

of PC (constraints on processor, memory etc.)

UC Santa Barbara

Classification of Requirements

• Requirements can be classified as:
– Functional requirements: Requirements defining the

behavior of the system, fundamental process or
transformation that the software performs on inputs to
produce outputs

– Nonfunctional requirements: Requirements and
constraints on external interfaces, performance,
dependability, maintainability, reusability, security, etc.

– Domain requirements: Requirements that come from the
application domain of the system and reflect characteristics
of the domain (can be functional or nonfunctional)

UC Santa Barbara

Functional vs Non-functional Requirements
• Functional requirements (user + system requirements)

– Statements of services the system should provide, how the system should
react to particular inputs and how the system should behave in particular
situations

– May also state what the system should not do

• Domain requirements
– Constraints on the system from the domain of operation

• Operating environment (e.g. underwater, temp range, environmental
conditions to be tolerated)

• Non-functional requirements
– Constraints on services or functions offered by the system such as timing

constraints, constraints on the development process, standards, etc.
– Often apply to the system as a whole rather than individual features or

services

13

UC Santa Barbara

Non-functional requirements
• These define system properties and constraints e.g. reliability,

response time and storage requirements. Constraints are I/O device
capability, system representations, etc.

• Process requirements may also be specified mandating a particular
IDE, programming language or development method

• Non-functional requirements may be more critical than functional
requirements and effect overall architecture (e.g. minimize
communications). If not met, system may be useless

• A single non-functional requirement, such as a security requirement,
may generate a number of related functional requirements that
define system services that are required.
– It may also generate requirements that restrict existing requirements

14

UC Santa Barbara

Property Measure
Speed Processed transactions/second

User/event response time
Screen refresh time

Size Mbytes
Number of ROM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

Metrics for Specifying Non-functional
Requirements

15

UC Santa Barbara

Who uses requirements?

• What are the uses of software requirement specification?
– For customers it is a specification of the product that will be

delivered, a contract
– For managers it can be used as a basis for scheduling and

measuring progress
– For the software designers it provides a specification of what

to design
– For coders it defines the range of acceptable

implementations and the outputs that must be produced
– For quality assurance personnel it is used for validation,

test planning, and verification

UC Santa Barbara

Essential difficulties in Software
Requirements
• Comprehension: People do not know exactly what they want.

They may not have a precise and detailed understanding of
what the output must be for every possible input, how long each
operation should take, etc.

• Communication: Software requirements are difficult to
communicate effectively. The fact that requirements specification
has multiple purposes and audiences makes this problem even
more severe

• Control: It is difficult to predict the cost of implementing different
requirements. Frequent changes to requirements make it difficult
to develop stable specifications

• Inseparable concerns: Requirements must simultaneously
address concerns of developers and customers. There may be
conflicting constraints which may require trade-offs,
compromises.

UC Santa Barbara

Phases

• We can think of developing a software requirements
specification document as a two-phase process
– Problem analysis: Goal is to understand the purpose of the

software, who will use it, what is the required functionality,
constraints on acceptable solutions, possible trade-offs
between conflicting constraints

– Requirements specification: Goal is to create the Software
Requirements Specification (SRS) document describing
exactly what is to be built. SRS captures the results of the
problem analysis

UC Santa Barbara

Problem Analysis

• Basic issues:
– How to effectively elicit a complete set of requirements from

the customer or other sources?
– How to decompose the problem into intellectually

manageable pieces?
– How to organize the information so it can be understood?
– How to communicate about the problem with all the parties

involved?
– How to resolve conflicting needs?
– How to know when to stop?

UC Santa Barbara

Eliciting Requirements

To elicit the requirements
• Interviews with the customer
• Use questionnaires if there are multiple users
• Investigate the environment the product will be used

– investigate the customer’s business
• Scenarios: Walk through different scenarios of how the product

will be used by the customer
– understandable to the customer
– can uncover additional requirements

• Rapid Prototyping: After an initial requirements analysis, build a
prototype. Focus on aspects of the software that will be visible to
the user such as input/output formats
– Prototype should focus on the key functionality (for example,

can ignore error checks)
– Prototype is reviewed by the customer and/or user to refine

the requirements for the software to be developed

UC Santa Barbara

Characteristics of a good Software
Requirements
• Correct: Every requirement stated in SRS should be one that

the software shall meet. Correctness can be checked by
customer or a higher level specification (system specification)

• Unambiguous: Every stated requirement in SRS should have
only one interpretation
– Natural languages are inherently ambiguous, they should be

used carefully
– Use of formal languages can help, however they may be

hard for the customer to understand
• Complete:

– All significant requirements, whether relating to functionality,
performance, design constraints, attributes, or external
interfaces should be included

– Responses to all realizable classes of input data and
situations should be included (responses to both valid and
invalid input)

UC Santa Barbara

Characteristics of a good Software
Requirements
• Consistent: No subset of specified requirements should

conflict. Possible conflicts:
– There may be logical or temporal conflicts between two

specified actions
– Different part of SRS may use different terms to refer to the

same object
• Verifiable: A requirement is verifiable if there exists some

cost-effective process with which a person or machine can
check that the software product meets the requirement
– Your claims should be measurable
– Avoid subjective phrases such as “works well” which are not

possible to measure/verify
– A verifiable requirement: Output of the program shall be

produced within 20 seconds of event X 60% of the time; and
shall be produced within 30 seconds of event X 100 % of the
time

UC Santa Barbara

Characteristics of a good Software
Requirements
• Modifiable: The style and structure of SRS should make it

possible to change it easily, completely and consistently
– No redundancy
– Express each requirement separately (not intermixed)

• Traceable: SRS should facilitate referencing of each
requirement in future development or enhancement
documentation
– Good indexing

• Do not forget the page numbers!

UC Santa Barbara

IEEE Recommendation for
Software Requirements Specification
https://ieeexplore.ieee.org/document/720574

We will not use this format in this course

For large and safety critical projects it might be necessary to
use a more detailed requirements specification like the IEEE
recommendation

IEEE format is more suitable for the waterfall model, in this
class we are using agile software development

24

https://ieeexplore.ieee.org/document/720574

UC Santa Barbara
Table of Contents
1. Introduction

1.1 Purpose
• Purpose of the SRS
• Intended audience of the SRS

1.2 Scope
• List software products that will be produced
• Summarize what software products will do
• Describe the application of the software being specified,

including relevant benefits, objectives and goals
1.3 Definitions, acronyms, abbreviations

• Definition of all terms, acronyms, abbreviations required to
properly interpret SRS

1.4 References
• Provide a complete list of referenced documents

1.5 Overview
• Describe what is in the reminder of the document
• Explain how SRS is organized

IEEE Recommendation for
Software Requirements Specification (SRS)

UC Santa Barbara
2. Overall description

2.1 Product perspective
• Identify the interface between the proposed software and

existing systems, including a diagram of major system
components.

• A block diagram showing major components of the larger
system, interconnections, and external interfaces can be
helpful.

2.2 Product functions
• Provide a summary of the major functions that the software will

perform
• The functions should be organized in a way that makes the list

of functions understandable to the customer or to anyone else
reading the document

• Diagrams can be used to explain different functions and their
relationships

UC Santa Barbara

2.3 User characteristics
• General characteristics of the intended user of the product,

level of expertise/training required to use the product
2.4 Constraints

• List all the constraints that will limit the developers options,
interfaces to other applications, programming language
requirements, hardware limitations, etc.

2.5 Assumptions and dependencies
• List the factors that affect the requirements in the SRS

(assumptions on which operating system is available etc.)

UC Santa Barbara
3. Specific requirements (these are the detailed requirements)

• This section of the SRS should contain the software requirements
to a level of detail sufficient to enable designers to design a
system to satisfy those requirements, and testers to test that the
system satisfies those requirements

3.1 External interface requirements
• This section should specify various interfaces in detail: system

interfaces, user interfaces, hardware interfaces, software
interfaces, communications interfaces, etc.

• A detailed description of all inputs and outputs from the
software system should be given:
– Should include: source of input and destination of output; valid

range, accuracy and/or tolerance; units of measure; timing;
screen formats/organization; window formats/organization; data
formats; command formats, etc.

• Should complement but not repeat the information given in
section 2

UC Santa Barbara

3.1.1 User interfaces
– Screen formats, page or window layouts, error messages, etc.

Some sample screen dumps can be used here to explain the
interface

3.1.2 Hardware interfaces
– Interface between hardware and software product, which devices

are supported
3.1.3 Software interfaces

– Specify use of other software products and interfaces with other
application systems

3.1.4 Communication interfaces
– Interfaces to communications such as local network protocols, etc.

UC Santa Barbara

3.2 Functional requirements
• Functional requirements should define all the fundamental

actions that the system must take place in the software in
accepting and processing the inputs and in processing and
generating the outputs

• Should include: validity checks on input; exact sequence of
operations; responses to abnormal situations; relationship of
outputs to inputs

• It can be organized in various ways, such as with respect to
user classes, features, stimulus or a combination of those.

• Use-case diagrams, scenarios, activity diagrams can be used
here

UC Santa Barbara
3.3 Performance requirements

• Speed, availability, response time, recovery time of various
software functions, etc.

• Performance requirements should be specified in measurable
terms. For example: “95% of the transactions shall be
processed in less than 1 second.” rather than “An operator shall
not have to wait for the transaction to complete

• There can be a separate section identifying the capacity
constraints (for example amount of data that will be handled)

3.4 Design constraints
• Required standards, implementation language restrictions,

resource limits, operating environment(s) etc.
3.5 Software system attributes

• Attributes such as security, portability, reliability
3.6 Domain requirements

• Explain the application domain and constraints on the
application domain

4 Appendices
– Any other important material

UC Santa Barbara

Software Specification Problem

• In different phases of the software process we need ways to
specify the deliverable for that phase
– Need to specify the requirements

• Which is what you are doing in product requirements
document (PRD)

– Need to specify the design
• We need to document and communicate the design

– Need to specify the implementation
• Comments
• Assertions

UC Santa Barbara

Specification Languages

• Main issue: When you write code you write it in a programming
language
– How do you write the requirements?
– How do you write the design?

• Specification languages
– Used to specify the requirements or the design
– As we have seen parts of software requirements are

necessarily in English (customer has to understand). To
bring some structure to the requirements specification you
can use semi-formal techniques such as use-case diagrams.
Depending on the application you maybe able to use formal
techniques too

– For design you can use UML class diagrams, sequence
diagrams, state diagrams, activity diagrams

– Some specification languages (such as UML class diagrams
are supported with code generation tools)

UC Santa Barbara

Specification

• Specifications can be
– Informal

• No formal syntax or semantics
– for example in English

• Informal specifications can be ambiguous and imprecise
– Semiformal

• Syntax is precise but does not have formal semantics
• UML (Universal Modeling Language) class diagrams,

sequence diagrams
– Formal

• Both syntax and semantics are formal
• Z, Statecharts, SDL (Specification and Design

Language), Message Sequence Charts (MSC), Petri
nets, CSP, SCR, RSML

UC Santa Barbara

Ambiguities in Informal Specifications

• “The input can be typed or selected from the menu“
– The input can be typed or selected from the menu or both
– The input can be typed or selected from the menu but not

both

• “The number of songs selected should be less than 10”
– Is it strictly less than?
– Or, is it less than or equal?

• “The user has to select the options A and B or C”
– Is it “(A and B) or C”
– Or, is it “A and (B or C)”

UC Santa Barbara

A success story for formal specifications:
RSML and TCAS
• Requirements State Machine Language (RSML)

– A formal specification language based on hierarchical state
machines (statecharts)

• The developers of RSML applied it to the specification of Traffic
Collision Avoidance System (TCAS) to demonstrate benefits of
using RSML [Leveson et al. 1994]
– TCAS: the specification of a software system which is

required on all aircraft in USA carrying more than 30
passengers During the specification of TCAS in RSML
ambiguities were discovered in the original English
specification of TCAS

– Eventually FAA decided to use the RSML versions of the
TCAS specification

UC Santa Barbara

Another Example Formal Specification

• Formal specifications avoid ambiguity
– However, they could be hard to understand
– And it is not easy to write formal specifications

• Let’s try to specify a sorting procedure formally (mathematically)
• I will just use basic Math concepts: functions, integers,

arithmetic
– Input: I : An array of size n of integers

• How do we formally specify what an array is?
• I : Z → Z (a function from integers to integers)
• I : 1 ... n → Z
• n ≥ 1

UC Santa Barbara

Example: Sorting

– Output: O : 1 ... n → Z
• ∀ i , O(i) ≤ O(i+1)
• ∀ i , 1 ≤ i ≤ n ⇒ O(i) ≤ O(i+1)
• ∀ i , 1 ≤ i < n ⇒ O(i) ≤ O(i+1)
• (∀ i , 1 ≤ i < n ⇒ O(i) ≤ O(i+1))
 ∧ (∀ i , 1 ≤ i ≤ n ⇒ (∃ j , 1 ≤ j ≤ n ∧ O(i) = I(j)))
• (∀ i , 1 ≤ i < n ⇒ O(i) ≤ O(i+1))
∧ (∀ i , 1 ≤ i ≤ n ⇒ (∃ j , 1 ≤ j ≤ n ∧ O(i) = I(j)))
∧ (∀ i , 1 ≤ i ≤ n ⇒ (∃ j , 1 ≤ j ≤ n ∧ I(i) = O(j)))
• (∀ i , 1 ≤ i < n ⇒ O(i) ≤ O(i+1))
∧ (∃ f : 1 ... n → 1 ... n ,
 (∀ i , j , (1 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ i ≠ j) ⇒ f(i) ≠ f(j))

∧ (∀ i, 1 ≤ i ≤ n ⇒ O(i) = I(f(i))))

UC Santa Barbara

Use cases

• Use cases document the behavior of the system from the users’
point of view.
– By user we mean anything external to the system

• An actor is a role played by an outside entity that interacts
directly with the system
– An actor can be a human, or a machine or program
– Actors are shown as stick figures in use case diagrams

Customer

UC Santa Barbara

Use cases

• A use case describes the possible sequences of interactions
among the system and one or more actors in response to some
initial stimulus by one of the actors
– Each way of using the system is called a use case
– A use case is not a single scenario but rather a description of

a set of scenarios
– For example: Creating an account
– Individual use cases are shown as named ovals in use case

diagrams

• A use case involves a sequence of interactions between the
initiator and the system, possibly involving other actors.

• In a use case, the system is considered as a black-box. We are
only interested in externally visible behavior

Creating
an account

UC Santa Barbara

Use cases

• To define a use case, group all transactions that are similar in
nature

• A typical use case might include a main case, with alternatives
taken in various combinations and including all possible
exceptions that can arise in handling them
– Use case for a bank: Performing a Transaction at the

Counter
• Subcases could include Making Deposits, Making

Withdrawals, etc., together with exceptions such as
Overdrawn or Account Closed

– Apply for a Loan could be a separate use case since it is
likely to involve very different interactions

• Description of a use case should include events exchanged
between objects and the operations performed by the system
that are visible to actors

UC Santa Barbara

Defining use cases

1. Identify the boundary of the application, identify the objects
outside the boundary that interact with the system

2. Classify the objects by the roles they play, each role defines an
actor

3. Each fundamentally different way an actor uses the system is a
use case

4. Make up some specific scenarios for each use case (plug in
parameters if necessary)

5. Determine the interaction sequences: identify the event that
initiates the use case, determine if there are preconditions that
must be true before the use case can begin, determine the
conclusion

6. Write a prose description of the use case
7. Consider all the exceptions that can occur and how they affect

the use case
8. Look for common fragments among different use cases and

factor them out into base cases and additions

UC Santa Barbara

Documenting use cases: Online Shopping
Use case: Place Order Actors: Costumer
Precondition: A valid user has logged into the system
Flow of Events:

1. The use case begins when the customer selects Place Order
2. The customer enters his or her name and address
3. If the customer enters only the zip code, the system supplies the city and state
4. The customer enters product codes for products to be ordered
5. For each product code entered

a) the system supplies a product description and price
b) the system adds the price of the item to the total

end loop
6. The customer enters credit card payment information
7. The customer selects Submit
8. The system verifies the information [Exception: Information Incorrect], saves the order as
pending, and forwards payment information to the accounting system.
9. When payment is confirmed [Exception: Payment not Confirmed], the order is marked
confirmed, an order ID is returned to the customer, and the use case terminates

Exceptions:
Payment not Confirmed: the system will prompt the customer to correct payment information
or cancel. If the customer chooses to correct the information, go back to step 6 in the Basic
Path. If the customer chooses to cancel, the use case terminates.

 Information Incorrect: If any information is incorrect, the system prompts the customer to
correct it.

Postcondition: If the order was not canceled, it is saved in the system and marked confirmed

UC Santa Barbara

Documenting use cases: Online Shopping
Flow of Events:
Basic Path:

1. The use case begins when the customer selects Place Order
2. The customer enters his or her name and address
3. While the customer enters product codes

a) the system supplies a product description and price
b) the system adds the price of the item to the total

end loop
6. The customer enters credit card payment information
7. The customer selects Submit
8. The system verifies the information, saves the order as pending, and forwards payment
information to the accounting system. If any information is incorrect, the system prompts the
customer to correct it.
9. When payment is confirmed [Exception: payment not confirmed], the order is marked
confirmed, an order ID is returned to the customer, and the use case terminates

Alternative Paths:
– At any time before step 7, the customer can select Cancel. The order is not saved and

the use case ends
– In step 2, if the customer enters only the zip code, the system supplies the city and state
– In step 6, if any information is incorrect, the system prompts the customer to correct the

information
– In step 7, if payment is not confirmed, the system prompts the customer to correct

payment information or cancel. If the customer chooses to correct the information, go
back to step 4 in the Basic Path. If the customer chooses to cancel, the use case ends.

UC Santa Barbara

Combining use cases

• A use case extends another use case when it embeds new
behavior into a complete base case
– Check Baggage extends the base case Check in for Flight
– You do not have to check baggage to check in for flight.

• A use case uses another use case when it embeds a
subsequence as a necessary part of a larger case (In some
texts this relationship is called includes instead of uses)
– uses relationship permits the same behavior to be

embedded in many otherwise unrelated use cases
– For example Check in for Flight use case uses Assign Seat

use case
• The difference is

– In the extends the extended use case is a valid use case by
itself

– In the uses the use case which is using the other use case
is not complete without it

UC Santa Barbara

Combining use cases

Assign Seat
Check in
for Flight

Check
Baggage

Upgrade
Seat

<<extends>>
<<extends>>

<<uses>>

Customer

Flight Attendant

actor

use case

UC Santa Barbara

Generalization in use case diagrams

Customer

Individual
Customer

Corporate
Customer

Validate
User

Check
Password

Retinal
Scan

Indicates
generalization

UC Santa Barbara
Online Human Resources (HR) System

Employee

Online HR System

Locate
Employee

Update Employee
Profile

Update Benefits

Access Travel
System

Access Pay
Records

Manager

Healthcare Plan System

Insurance Plan
System

system
boundary

[current month is October]

[read only access]

Employee Account
Database

UC Santa Barbara

Online HR System

Use case: Update Benefits
Actors: Employee, Employee Account Database, Healthcare Plan System,

Insurance Plan System
Precondition: Employee has logged on to the system and selected “update

benefits” option
Flow of Events:
Basic Path:

1. System retrieves employee account from Employee Account Database
2. System asks employee to select medical plan type; uses Update Medical
Plan
3. System asks employee to select dental plan type; uses Update Dental Plan
...

Alternative Paths:
 If health plan is not available in the Employee’s area the employee is informed
and asked to select another plan

UC Santa Barbara

Online HR System

Update
Medical Plan

Update
Dental Plan

Update Benefits

<<uses>>

<<extends>>(Benefits Options)
[employee requests
stock purchase option]

<<uses>>

Employee

Update
Insurance Plan

Select Stock
Purchase

Select Reimbursement
for Healthcare

<<uses>>

<<extends>> (Benefits Options)
[employee requests
reimbursement option]

Extension Points
Benefits Options: after
required enrollments

extension point name

extension location

UC Santa Barbara

References

• “Software requirements: A tutorial,” Stuart R. Faulk
• IEEE Recommended Practice for Software Requirements

Specifications
• “Getting started: Using use cases to capture requirements”,

James Rumbaugh, 1994
• “Using UML”, Perdita Stevens, Rob Pooley, 2000

UC Santa Barbara

User Stories
• Similar to Use Cases but not the same

– User stories are centered on the result and the benefit of the thing you’re
describing, whereas use cases are more granular, and describe how your
system will act.

• Use cases: actors – scope – goals – steps – success
– Details of most important requirements worked out ahead of time to

ensure that everyone is on the same page
– Useful for groups of similar stories and describing overall system

• Use cases decompose stories into actions in the system

• User stories: scope of a feature + acceptance criteria
– Each feature is captured as a story; stories easily prioritized
– A story is a place holder for discussion and planning poker in a sprint

52
See recommended reading links for examples and suggestions

UC Santa Barbara

Writing Good User Stories
• It is typically difficult to get started writing good user stories

• Here are 4 steps to make it easier

1. As a [role], I can [feature] so that [reason]

2. You can use index cards and a sharpie or software tools like Jira,
Trello, Pivotal tracker

3. Make it testable with acceptance criteria or demo plan

4. Connect the dots

53From: http://codesqueeze.com/the-easy-way-to-writing-good-user-stories/

UC Santa Barbara• Role – a person;
feature – something your project does;
reason – a solution to a problem the person has
– This is a pattern that is commonly used for stories

As a account owner, I can check my balance online so that I can access my
daily balance 24 hours a day.

• Variations
– As a [role], I want [feature] because [reason]
– As a [role], I can [feature]
– As a [role], I can [feature] so that [reason]

54

As a [role], I can [feature] so that [reason]

UC Santa Barbara• There is software out there to help you with this
– Jira, Trello, Pivotal tracker

• You can also use index cards and a sharpie
– It also enables you to doodle/draw the outline of the user interface

• Keep them short and sweet and unambiguous
• Goal is to aid communication, not overly detailed or long-winded

• If it doesn’t fit, break up the story into sub-stories

55

Developing user stories

UC Santa Barbara• If they are short and sweet and without detail, how do we know when
they are “done”?

Story: As a [role], I can [feature] so that [reason]
• Include an acceptance test (what to demo when done):

Scenario 1: Title
Given [context]
And [some more context]…
When [event]
Then [outcome]
And [another outcome]…

• Tests should be simple
– You should be able to code them in a few lines of code

– If they don’t, break up the story into two
56

Scenario 1: Account balance is negative
Given the account’s balance is below 0
And there is not a scheduled direct deposit that day
When the account owner attempts to withdraw money
Then the bank will deny it
And send the account owner a nasty letter.

Example

Make it testable with acceptance test or
demo

UC Santa Barbara

References

Recommended reading:

http://www.boost.co.nz/blog/2012/01/use-cases-or-user-stories/

http://codesqueeze.com/the-easy-way-to-writing-good-user-stories/

57

http://www.boost.co.nz/blog/2012/01/use-cases-or-user-stories/
http://codesqueeze.com/the-easy-way-to-writing-good-user-stories/

UC Santa Barbara

PRDv1: Your Living Requirements Document:
A Shared Google Doc (due in 1 week)

• Authors, Team, Project Title
• Intro – including problem, innovation, science, core technical advance

(2-3 pages)
– Define project specifics, team goals/objectives, background, and

assumptions
• System architecture overview

– High level diagram (1 page)
– User interaction and design (1+ page)

• Requirements (functional and non-functional)
– User stories or use cases (links) : 10 for PRDv1 prioritized
– Prototyping code, tests, metrics (5+ user stories): github commits/issues

• System models: contexts, sequences, behavioral/UML, state
• Appendices

– Technologies employed
58

UC Santa Barbara

A Hypothetical Example Project

59

UC Santa Barbara

Example Project: IoT Sensor Data
Viewer

• Online data visualization for IoT sensor data

60

Edge Cloud

Public/Private Cloud

Virtual
Server

@ UCSB
+ Docker, Postgres,

(web frontend + backend)

DockerHub

=Virtual Server
(Store/Forward
Data to cloud)

IoT
data

Use
r

login

Dyn
amic

data vi
s

User
authIoT

data

UC Santa Barbara

Example Project: IoT Sensor Data
Viewer
• As a [role], I can [feature] so that [reason]

Title: Given [context], when [event], Then [outcome]
1. As a user, I can login, so that I can use the system

– Login: Given a user name and password, when saved on a
web page form, then the user is logged in and can access
viewer services (test = a test page is loaded that is only
accessible to logged in users)

61

UC Santa Barbara

Example Project: IoT Sensor Data
Viewer
• As a [role], I can [feature] so that [reason]

Title: Given [context], when [event], Then [outcome]
1. As a user, I can login, so that I can use the system

– Login: Given a user name and password, when saved on a
web page form, then the user is logged in and can access
viewer services (test = a test page is loaded that is only
accessible to logged in users)

2. As a sensor, I can upload my data to the viewer over the
Internet, so that it is persisted there

– Sensor Upload: Given a sensor connected to the Internet,
when a script invokes an upload API, then a window of data
from the sensor is uploaded to the viewer and the viewer
saves the data (test = see the data locally, run the script,
see the on the viewer)
• Note that there is no notion of “how” to persist: database, file,

etc
• That can be included or pushed off until later…

62

UC Santa Barbara

Example Project: IoT Sensor Data
Viewer
• As a [role], I can [feature] so that [reason]

Title: Given [context], when [event], Then [outcome]
3. As a developer, I can save my environment to DockerHub,
so that I download and use it on different machines

– DockerHub: Given a container, when exited and pushed to
DockerHub, then the container can be downloaded and run
on a different machine (test = upload, download, and run of
container)

63

UC Santa Barbara

Example Project: IoT Sensor Data
Viewer
• As a [role], I can [feature] so that [reason]

Title: Given [context], when [event], Then [outcome]
4. As an API request, I can store incoming data to a
database, so that it is persisted in a structured format

– Valid DB Storage Request: Given a API request over the
Internet, when a valid request occurs, a window of data is
stored in a DB (test1=make an valid request with data: view
data separately in DB, view schema)

– Invalid DB Storage Request: Given a API request over the
Internet, when an invalid request occurs, an error is
logged/returned (test2=make an invalid request: no change
to DB, throw error message))

64

UC Santa Barbara

Example Project: IoT Sensor Data
Viewer

• As a [role], I can [feature] so that [reason]
Title: Given [context], when [event], Then [outcome]

5. As an API, I can handle multiple, concurrent requests at once, so that
throughput is maximized given available server resources

– Throughput: Given an API, when multiple requests come in, multiple
threads handle the requests, #threads = VALxCPUs (test = measure
throughput for different numbers of threads and CPU resources)

65

UC Santa Barbara

Example Project: IoT Sensor Data
Viewer

• As a [role], I can [feature] so that [reason]
Title: Given [context], when [event], Then [outcome]

5. As an API, I can handle multiple, concurrent requests at once, so that
throughput is maximized given available server resources

– Throughput: Given an API, when multiple requests come in, multiple
threads handle the requests, #threads = VALxCPUs (test = measure
throughput for different numbers of threads and CPU resources)

• Others:
– As a user, I can access API operation, so that … //define/implement different API functions
– As a user, I can access multiple web pages for the service, so that… //define/implement

UI and/or front end
– As a user, I can view sensor data over the Internet, so that… //add Chart.js for fake, static

data
– As a user, I can view dynamic sensor data over the Internet, so that… //add Chart.js +

GraphQL for fake, dynamic data
– Next: connect vis to DB, add API ops, add edge server support (revisit earlier features),

handle errors if/when sensors go down or send bad data, support multiple vis options, add
data analysis/ML algorithms on data for extracting insights from data, …

66

UC Santa Barbara
CS189A Schedule

Week 1 (Oct. 2) project pitch meeting, team
formation, project selection

Week 2 (Oct. 9) contact mentors,
select team lead and scribe

sprint 1 starts

Week 3 (Oct. 16) vision statement due on Oct. 17

Week 4 (Oct. 23) sprint 1 ends,
sprint 2 starts

Week 5 (Oct. 30) Requirements and Design
PRD version 1 due Oct. 31

Week 6 (Nov. 6) sprint 2 ends,
sprint 3 starts

Week 7 (Nov. 13) Requirements and Design
PRD version 2 due Nov. 14

Week 8 (Nov. 20) sprint 3 ends,
sprint 4 starts

Week 9 (Nov. 27)

Week 10 (Dec. 4) Final presentations and demos sprint 4 ends

UC Santa Barbara

❖ Sprint planning (using Trello): Backlog, on deck, in progress, done
– Break up into tasks with durations (hours, part/days, points)
– Assign 2+ members to each (implementer and tester/reviewer)
o Fill 10 days according to durations for each member
o Order tasks by priority (top = highest): top total 10 days * 5 members

– Any new tasks identified put onto bottom of backlog for next time
❖ Setup burndown using google worksheet (shared w/ all)
❖ Daily standup/scrum (scribe records in google doc)

Sprint planning

UC Santa Barbara
Sprint 2 Plan
❖Retrospective: go around team,

state 1 good, then 1 bad
– Discuss bad; identify 2 things to

improve/fix for next sprint (scribe this)
❖Sprint 2 plan

– 10 use cases or user stories (w/ one to
construct/complete PRDv1 – Due in a
week) w/ acceptance test
o Add these to trello story board (add link

to PRD)
– PRDv2 tasks (see following slides)
– Break into tasks

o Estimate/discuss timings (1/2 – 1 day
each; or points)

o Demo/prototyping plan
o Total up to have timing per story

– Choose tasks until tasks are covered
– Setup up burndown graph and update

each scrum

• For Instructor and/or TA
• Demos from last sprint
• Improvement plan
• Top story for Sprint 2

• Plan for demo
• Sprint 2 Tasks (5x10days)

• 2+ members each
• Plan for prototyping/acc.

testing
• Burndown (Sprint 1 and 2)
• Sprint2 backlog

• Remaining tasks
• Pursue these if you get

done early
• Product backlog (Story

board)
• Prioritized stories/use

cases
• Tasks in trello linked/color

coded

UC Santa Barbara

PRDv1: Your Living Requirements Document:
A Shared Google Doc (due next week)

❖ Authors, Team, Project Title
❖ Intro – including problem, innovation, science, core technical

advance (2-3 pages)
– Define project specifics, team goals/objectives, background, and

assumptions
❖ System architecture overview

– High level diagram (1 page)
– User interaction and design (1+ page)

❖ Requirements (functional and non-functional)
– User stories or use cases (links): 10 for PRDv1 prioritized
– Prototyping code, tests, metrics (5+ use cases or user stories): github

commits/issues
❖ System models: contexts, sequences, behaviorial/UML, state
❖ Appendices

– Technologies employed
70

UC Santa Barbara

PRDv2: Your Living Requirements Document: A
Shared Google Doc (due 1 month after PRDv1)

• Authors, Team, Project Title
• Intro: problem, innovation, science, core technical advance

– Define project specifics, team goals/objectives, background, and
assumptions

• System architecture overview
– High level diagram (1 page)
– User interaction and design (1 page)

• Requirements (functional and non-functional)
– User stories or use cases (links): 20+ for PRDv2 prioritized
– Prototyping code, tests, metrics (10+ user stories): github commits/issues

• System models (1+ pages)
– Contexts, interactions, structural, behavioral (UML)
– Use cases, sequencing, event response, system state, classes/objects

• Appendices - Technologies employed
71

UC Santa BarbaraPRD Tasks for Sprint 2
❖PRDv1: 10 stories/ucases prioritized w/ acceptance

tests/testable postconditions
– 5+ with implementation started or completed w/ tests
– Give links to github commits for 5+ in PRDv1 writeup next to story

❖PRDv1: architecture/system diagram

❖PRDv1: 2-3 page in depth writeup: problem, innovation,
science, core technical advance; project specifics, team
goals/objectives, background, & assumptions

❖PRDv2: more detailed system diagram + detailed design

❖PRDv2: 10 additional stories/ucase (20 total), 5+ additional
implementations/tests (10 total)

❖PRDv2: 3+ sequence diagrams, 3+ UI
interaction/sequence diagrams + mockups

