
CS189A Capstone
Fall 2023

Lecture 2: Introduction to Software
Engineering and Software Process

Course Work
• In 189A, in addition to building a prototype for the project you will also

prepare the requirements and design specifications for the project
– All project artifacts by all teams will be accessible by the class

• There will be no homeworks, midterm or final
– So that you can devote a lot of time and energy to the project!

• You will be graded on the project deliverables, your performance in
presentations and discussions will be evaluated

• There will be reading assignments

Course work
• Team Formation: Forming a team and claiming a project

• Vision Statement: Each team must prepare a 2+ page vision
statement about the project describing
– what the project is about
– what will be the outcome of the project
– what will be the implementation platform

• Product Requirements and Design (PRD) document: two deliverables
– use cases, system architecture

• Presentation and Demo
– project presentation
– demo of the prototype

The Structure of the Class
• The class will be organized as follows

– Monday: Instructor discusses a general software engineering topic
followed by meetings with teams to learn about their progress

– Tuesday discussions: TAs discuss a tool or a topic, followed by
discussions/meetings with teams

• We will use agile software development
– You will do 4 2-week sprints

Course Goals
• To learn the issues and problems involved in large software projects

• To learn phases of software development and evolution: requirements
analysis and specification, software design and specification,
implementation, testing, and maintenance

• To learn basic software engineering techniques and principles

• To gain experience in large scale software development by working
on a team project

CS189A Schedule
Week 1 (Oct. 2) project pitch meeting, team

formation, project selection

Week 2 (Oct. 9) contact mentors,
select team lead and scribe

sprint 1 starts

Week 3 (Oct. 16) vision statement due on Oct. 17

Week 4 (Oct. 23) sprint 1 ends,
sprint 2 starts

Week 5 (Oct. 30) Requirements and Design
PRD version 1 due Oct. 31

Week 6 (Nov. 6) sprint 2 ends,
sprint 3 starts

Week 7 (Nov. 13) Requirements and Design
PRD version 2 due Nov. 14

Week 8 (Nov. 20) sprint 3 ends,
sprint 4 starts

Week 9 (Nov. 27)

Week 10 (Dec. 4) Final presentations and demos sprint 4 ends

Software Engineering,
Software’s Chronic Crisis,

Essential vs. Accidental Difficulties in
Software Development

UC Santa Barbara

CS189A: Today

• Today:
– Intro to software engineering and software process
– vision statement

– Teams
• Identify group leader and scribe

– Lead: motivator, picks up all loose ends, settles debates/makes decisions
– Scribe: records scrums, retrospectives, sprint planning, mentor/TA meetings

• Contact mentors, set up periodic meetings
• Work on vision statement: Due Tuesday next week!

8

UC Santa Barbara

Software engineering is 55 years old!

Purpose: to look for a
solution to software crisis

–50 top computer scientists,
programmers and industry
leaders got together to look
for a solution to the difficulties
in building large software
systems

–Considered to be the birth of
“software engineering” as a
research area

• In 1968 a seminal NATO
Conference was held in Germany

9

UC Santa Barbara

Software’s chronic crisis

• A quarter century later (1994) an article in Scientific American:

10

UC Santa Barbara

Software’s chronic crisis

• More than another quarter century later:

• This is a photo of the navigation system of my car

– It crashes and reboots while I am driving!

11

UC Santa BarbaraSoftware Engineering & Software’s Chronic Crises

Software’ Chronic Crisis:
Software systems frequently fail dependability and security
requirements

Software Engineering is hard
Both researchers and practitioners have developed various
approaches and techniques to address difficulties in software
engineering

We will discuss some of them in this course

12

Software’s Chronic Crisis

Large software systems often:
• Do not provide the desired functionality
• Take too long to build
• Cost too much to build
• Require too much resources (time, space) to run
• Cannot evolve to meet changing needs

– For every 6 large software projects that become operational, 2 of
them are canceled

– On the average software development projects overshoot their
schedule by half

– 3 quarters of the large systems do not provide required
functionality

Software Failures

• There is a long list of failed software projects and software failures

• You can find a list of famous software bugs at:
http://www5.in.tum.de/~huckle/bugse.html

• I will talk about two famous and interesting software bugs

Ariane 5 Failure
• A software bug caused European

Space Agency’s Ariane 5 rocket to
crash 40 seconds into its first flight
(cost: half billion dollars)

• The bug was caused because of a software component that was
being reused from Ariane 4

• A software exception occurred during execution of a data conversion
from 64-bit floating point to 16-bit signed integer value
– The value was larger than 32,767, the largest integer storable in a

16 bit signed integer, and thus the conversion failed and an
exception was raised by the program

• When the primary computer system failed due to this problem, the
secondary system started running.
– The secondary system was running the same software, so it failed

too!

Ariane 5 Failure

• The programmers for Ariane 4 had decided that this particular velocity
figure would never be large enough to raise this exception.
– Ariane 5 was a faster rocket than Ariane 4!

• The calculation containing the bug actually served no purpose once
the rocket was in the air.
– Engineers chose long ago, in an earlier version of the Ariane

rocket, to leave this function running for the first 40 seconds of
flight to make it easy to restart the system in the event of a brief
hold in the countdown.

• You can read the report of Ariane 5 failure at:
 http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html

Mars Pathfinder

• Priority inversion occurs when
– a thread that has higher priority is waiting for a resource held by

thread with a lower priority
• Pathfinder contained a data bus shared among multiple threads and

protected by a mutex lock
• Two threads that accessed the data bus were: a high-priority bus

management thread and a low-priority meteorological data gathering
thread

• Yet another thread with medium-priority was a long running
communications thread (which did not access the data bus)

• A few days into its mission, NASA’s Mars
Pathfinder computer system started rebooting
itself
– Cause: Priority inversion during preemptive

priority scheduling of threads

Mars Pathfinder
• The scenario that caused the reboot was:

– The meteorological data gathering thread accesses the bus and obtains
the mutex lock

– While the meteorological data gathering thread is accessing the bus, an
interrupt causes the high-priority bus management thread to be
scheduled

– Bus management thread tries to access the bus and blocks on the mutex
lock

– Scheduler starts running the meteorological thread again
– Before the meteorological thread finishes its task yet another interrupt

occurs and the medium-priority (and long running) communications
thread gets scheduled

– At this point high-priority bus management thread is waiting for the
low-priority meteorological data gathering thread, and the low-priority
meteorological data gathering thread is waiting for the medium-priority
communications thread

– Since communications thread had long-running tasks, after a while a
watchdog timer would go off and notice that the high-priority bus
management thread has not been executed for some time and conclude
that something was wrong and reboot the system

Software’s Chronic Crisis

• These are not isolated incidents:
– An IBM survey of 24 companies developing distributed systems:

• 55% of the projects cost more than expected
• 68% overran their schedules
• 88% had to be substantially redesigned

Software’s Chronic Crisis
• Software product size is increasing exponentially

– faster, smaller, cheaper hardware
• Software is everywhere: from TV sets to cell-phones to watches to

cars
• Marc Andreessen: “Software is Eating the World”
• Software is in safety-critical systems

– cars, airplanes, nuclear-power plants
• We are seeing more of

– distributed systems
– embedded systems
– real-time systems

• These kinds of systems are harder to build
• Software requirements change

– software evolves rather than being built

Summary

• Software’s chronic crisis: Development of large software systems is a
challenging task
– Large software systems often: Do not provide the desired

functionality; Take too long to build; Cost too much to build
Require too much resources (time, space) to run; Cannot evolve
to meet changing needs

• Software engineering focuses on addressing challenges that arise in
development of large software systems using a systematic,
disciplined, quantifiable approach

No Silver Bullet

• In 1987, in an article titled:
 “No Silver Bullet: Essence and Accidents of Software Engineering”
 Frederick P. Brooks made the argument that there is no silver bullet

that can kill the werewolf software projects

• Following Brooks, let’s philosophize about software a little bit

Essence vs. Accident

• Essence vs. accident in software development
– We can get rid of accidental difficulties in developing software
– Getting rid of these accidental difficulties will increase productivity

• For example using a high level programming language instead of
assembly language programming
– The difficulty we remove by replacing assembly language with a

high-level programming language is not an essential difficulty of
software development,

• It is an accidental difficulty brought by inadequacy of assembly
language for programming

Essence vs. Accident

• Essence vs. accident in software development
– Brooks argues that software development is inherently difficult

• “The essence of a software entity is a construct of interlocking
concepts: data sets, relationships among data items,
algorithms and invocations of functions. This essence is
abstract in that such a conceptual construct is the same
under many different representations. ... The hard part of
building software is the specification, design, and testing of
this conceptual construct, not the labor of representing it and
testing the fidelity of the representation.”

• Even if we remove all accidental difficulties which arise during
the translation of this conceptual construct (design) to a
representation (implementation), still at its essence software
development is difficult

Inherent Difficulties in Software

• Software has the following properties in its essence:
– Complexity
– Conformity
– Changeability
– Invisibility

• Since these properties are not accidental representing software in
different forms do not effect them

• The moral of the story:
– Do not raise your hopes up for a silver bullet, there may never be

a single innovation that can transform software development as
electronics, transistors, integrated-circuits and VLSI transformed
computer hardware

Complexity

• Software systems do not have regular structures, there are no
identical parts

• Identical computations or data structures are not repeated in software

• In contrast, there is a lot of regularity in hardware
– for example, a memory chip repeats the same basic structure

millions of times

Complexity

• Software systems have a very high number of discrete states
– Infinite if the memory is not bounded

• Elements of software interact in a non-linear fashion

• Complexity of the software increases much worse than linearly with
its size

Complexity
• Consider a plane that is going into a wind-tunnel for aerodynamics

tests
– During that test it does not matter what is the fabric used for the

seats of the plane, it does not even matter if the plane has seats
at all!

– Only thing that matters is the outside shape of the plane
– This is a great abstraction provided by the physical laws and it

helps mechanical engineers a great deal when they are designing
planes

• Such abstractions are available in any engineering discipline that
deals with real world entities

• Unfortunately, software engineers do not have the luxury of using
such abstractions which follow from physical laws
– Software engineers have to develop the abstractions themselves

(without any help from the physical laws)

Conformity

• Software has to conform to its environment
– Software conforms to hardware interfaces not the other way

around

• Most of the time software systems have to interface with an existing
system

• Even for a new system, the perception is that, it is easier to make
software interfaces conform to other parts of the system

Changeability

• Software is easy to change, unlike hardware

• Once an Intel processor goes to the production line, the cost of
replacing it is enormous (the Pentium FDIV bug in 90s cost Intel half
billion dollars)

• If a software product has a bug, the cost of replacing it is not
significant
– Just ask users to update their software

Changeability is not an Advantage

• Although it sounds like, finally, software has an advantage over
hardware, the effect of changeability is that there is more pressure on
changing the software

• Since software is easy to change software gets changed frequently
and deviates from the initial design
– adding new features
– supporting new hardware

Changeability

• Conformity and Changeability are two of the reasons why reusability
is not very successful in software systems

• Conformity and Changeability make it difficult to develop component
based software, components keep changing

Invisibility

• Software is invisible and un-visualizable
• Complete views can be incomprehensible
• Partial views can be misleading
• All views can be helpful

• Geometric abstractions are very useful in other engineering
disciplines
– Floor plan of a building helps both the architect and the client to

understand and evaluate a building
• Software does not exist in physical space and, hence, does not have

an inherent geometric representation

Invisibility

• Visualization tools for computer aided design are very helpful to
computer engineers
– Software tools that show the layout of the circuit (which has a

two-dimensional geometric shape) makes it much easier to design
a chip

• Visualization tools for software are not as successful
– There is nothing physical to visualize, it is hard to see an abstract

concept
– There is no physical distance among software components that

can be used in mapping software to a visual representation

Summary

• According to Brooks, there are essential difficulties in software
development which prevents significant improvements in software
engineering:
– Complexity; Conformity; Changeability; Invisibility

• He argues that an order of magnitude improvement in software
productivity cannot be achieved using a single technology due to
these essential difficulties

Software Development Process

How Do We Build Software?

Let’s look at an example:
• Sometime ago I asked our IT folks if they can do the following:

– Every year all the PhD students in our department fill out a
progress report that is evaluated by the graduate advisors. We
want to make this online.

• After I told this to our IT manager, he said “OK, let’s have a meeting
so that you can explain us the functionality you want.”

• We scheduled a meeting and at the meeting we went over
– The questions that should be in the progress report
– Type of answers for each question (is it a text field, a date, a

number, etc?)
– What type of users will access this system (students, faculty,

staff)?
– What will be the functionality available to each user?

Requirements Analysis and Specification
• This meeting where we discussed the functionality, input and output

formats, types of users, etc. is called requirements analysis
– During requirements analysis software developers try to figure out

the functionality required by the client

• After the requirements analysis all these issues can be clarified as a

set of Requirements specifications
– Maybe the IT folks who attended the requirements analysis

meeting are not the ones who will develop the software, so the
software developers will need a specification of what they are
supposed to build.

• Writing precise requirements specifications can be very challenging:
– Formal (mathematical) specifications are precise, but hard to read

and write
– English is easy to read and write, but ambiguous

Design
• After figuring out the requirements specifications, we have to build the

software
• In our example, I assume that the IT folks are going to talk about the

structure of this application first.
– There will be a backend database, the users will first login using

an authorization module, etc.
• Deciding on how to modularize the software is part of the

Architectural Design.
– It is helpful (most of the time necessary, since one may be working

in a team) to document the design architecture (i.e., modules and
their interfaces) before starting the implementation.

• After figuring out the modules, the next step is to figure out how to
build those modules.

• Detailed Design involves writing a detailed description of the
processing that will be done in each module before implementing it.
– Generally written in some structured pseudo-code.

Implementation and Testing

• Finally, the IT folks are going to pick an implementation language
(PHP, python, Java, etc.) and start writing code.

• This is the Implementation phase:
– Implement the modules defined by the architectural design and

the detailed design.

• After the implementation is finished the IT folks will need to check if
the software does what it is supposed to do.

• Use a set of inputs to Test the program
– When are they done with testing?
– Can they test parts of the program in isolation?

Maintenance

• After they finished the implementation, tested it, fixed all the bugs, are
they done?

• No, I (client) may say, “I would like to add a new question to the PhD
progress report” or “I found a bug when I was using it” or “You know, it
would be nice if we can also do the MS progress reports online” etc.
– The difficulty of changing the program may depend on how we

designed and implemented it:
• Are the module interfaces in the program well defined? Is

changing one part of the code effect all the other parts?

• This is called the Maintenance phase where the software is
continually modified to adopt to the changing needs of the customer
and the environment.

Software Process

• Then there is the question of how to organize the activities we
mentioned before (requirements analysis, design, implementation,
testing).

• There have been significant research on how to organize these
activities
– Waterfall model, spiral model, agile software development,

extreme programming, Scrum, etc.

Summary

• Software development involves multiple activities:
– Requirements analysis and specification
– Architectural design, detailed design
– Implementation
– Testing
– Maintenance
– Software development process

• There is active research in all of these areas in the software
engineering community

Software Process Models

UC Santa Barbara

Software process activities

1. Software specification
– Customers and engineers define the software that is to be produced and

any constraints/requirements on its operation

2. Software design
– Software spec is designed and prototyped

3. Software implementation, validation, and testing
– Software is programmed and checked to ensure that it is what the

customer requires

4. Software maintenance and evolution
– Software is maintained (bug fixes, upgrades) and modified to reflect

changing customer and market requirements

UC Santa Barbara

SW Specification (1): Requirements
Analysis and Documentation

• Discussion/debate on the functionality, input and output formats, types of
users, etc. is called requirements analysis
– Product managers and/or software developers try to figure out the

functionality required by the client
– Functional and non-functional requirements

UC Santa Barbara

SW Specification (1): Requirements
Analysis and Documentation

• Discussion/debate on the functionality, input and output formats, types of
users, etc. is called requirements analysis
– Product managers and/or software developers try to figure out the

functionality required by the client
– Functional and non-functional requirements

• Writing precise requirements specifications can be challenging:

– Formal (mathematical) specifications are precise, but hard to read/write
– English is easy to read and write, but ambiguous

– Today’s solutions employ a combination of
• IEEE Software Requirements Specification (SRS), Product

Requirements & Design (PRD) – combined with system
modeling, user stories, case studies

• Should be a “living document” that evolves over time
– Starts with a vision statement

UC Santa Barbara

(2) Software Design

– Product managers/owners do not develop the software
• Software developers use requirements doc to understand what to build

• Sketch out the functionality in the requirements specification
• Model the system and its components

– Context, interactions, structural, behavioral
– User interfaces, user experience
– Use cases, sequencing, event response, system state, classes/objects

• Define software architecture: drawings, evolving docs, coding
– Components with interfaces (application programming interfaces: APIs)
– High level and low level

– Dependencies, modules, alternatives
– Patterns

– Prototype components -- mock out / simulate missing pieces

UC Santa Barbara

(3) Implementation and Testing

• Decide on technologies to incorporate/integrate/reuse

• Implement modules defined by architectural design & detailed design
– Typically as prototypes that evolve over time into production-quality SW

• As part of prototyping and evolving testing happens concurrently
– That requirements are met, assumptions are held, bugs are minimized
– Be defensive! Prevent cases that you haven't considered from ever

executing (assert! exit! return error!)

• Use a set of inputs/actions to test the program
– When are you done with testing?
– Test parts of the program in isolation
– Unit tests, functional tests, integration tests

UC Santa Barbara

Validation, Verification and Testing
• Reviews, walkthroughs, inspections

• Software testing:
– black-box vs. white-box; functional vs. structural

– random testing, exhaustive testing

– domain testing, boundary conditions

– coverage criteria: statement, branch & path coverage, condition
coverage, multiple condition coverage

– unit testing, stubs, drivers

– integration& testing: top-down vs. bottom-up integration and testing

– regression testing

UC Santa Barbara

(4) Maintenance & Evolution

• We finished implementation, tested it, fixed all the bugs, are we
done?

• No, we (client) may say, “I would like to add …” or “I found a bug
when I was using it” or “You know, it would be nice if we could also
…” etc.
– Ease of changing depends on how SW is designed and

implemented

• Phase in which the software is continually modified to adapt to the
changing needs of the customer and the environment

• At some point, the software’s lifetime ends
– It is decommissioned, deprecated (APIs) and/or no longer supported
– Typically this is a business decision

UC Santa Barbara

Software Process Models
• Stages of software engineering: requirements specification,

design, implementation, testing, maintenance

• Software process (software life-cycle) models

– Determine the stages (and their order)
– Establish the transition criteria for progressing from one stage to the next

UC Santa Barbara

Software Process Models
• Stages of software engineering: requirements specification,

design, implementation, testing, maintenance

• Software process (software life-cycle) models

– Determine the stages (and their order)
– Establish the transition criteria for progressing from one stage to the next

• Software process models answer the questions:
– What shall we do next?
– How long shall we continue to do it?

• Models we’ll discuss: waterfall, spiral, evolutionary: agile/extreme
– Waterfall (70s, 80s) when all software was “shrink wrapped and shipped”
– Spiral (late 80s) risk-driven and iterative; Rational Unified Process (UP or RUP)
– Evolutionary (late 90s, early 00s) as SW becomes increasingly online

UC Santa Barbara

Waterfall Model

requirements analysis
and specification

design

implementation

testing and
integration

maintenance

The waterfall model

Software product is not only the executable file:
source code, test data, user manual, requirements specification, design specification

Document-driven
requirements specification, design
specification, test-plan
these documents are crucial in
achieving maintainability, traceability
and visibility

UC Santa Barbara

Waterfall Model
Problems with waterfall model

– Because of the restricted feedback loops, waterfall model is essentially
sequential

• for example, requirements must be stated completely before implementation starts
• it is often difficult for the customer to state all requirements explicitly
• hard to handle changes in the requirements

– A working model of the software is not available until late in the project life-span
• an undetected mistake can be very costly to fix
• the delivered program may not meet the customer’s needs

– For interactive, end-user applications, document-driven approach may not work
• for example, it is hard to document a GUI

requirements analysis
and specification

design

implementation

testing and
integration

maintenance

UC Santa Barbara

Determine
objectives,
alternatives,
constraints

Evaluate
alternatives,
identify, resolve
risks

Develop,
verify
next-level
product

Plan next
phase

radial dimension shows the cumulative cost
angular dimension shows the progress in
each cycle

cumulative cost

progress in
each cycle

start

Spiral Model (late 80s origin)

Attack the highest risk part (usually
obtaining proper user requirements)
of the project first, iterate over next
highest risk sub-problem

Risk driven, iterative
BUT: software delivered
only after many iterations

UC Santa Barbara

Evolutionary Software Development
• Software is built iteratively and incrementally by first providing an initial

version and then improving/extending it based on the user feedback until an
adequate system has been developed (late 90s, early 00s origin)
– Agile software development, extreme programming
– Triggered by change in application type (consumer, phones, web, cloud)

• All activities are executed concurrently with fast feedback among them

• Specifics impacted by application domain and deployment strategy (e.g.
cloud/SaaS, web app)

specification

validation

developmentoutline
description

initial
version

intermediate
versions

final
version

UC Santa Barbara

Agile Software Development
Manifesto for Agile Software Development (2001)
available at: http://agilemanifesto.org/

“We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on
the left more”

UC Santa Barbara

Principles of Agile Software Development

• Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

• Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the project.

• Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

UC Santa Barbara

Principles of Agile Software Development

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity -- the art of maximizing the amount of work not done -- is essential.

• The best architectures, requirements, and designs emerge from self-organizing

teams.

• At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

UC Santa Barbara

Extreme Programming

• Extreme programming (XP) is a type of agile software development process
proposed by Kent Beck (~late 90’s)

• XP follows the agile software development principles as follows
– Software is built iteratively, with frequent releases
– Each release implements the set of most valuable features/use-cases/stories

that are chosen by the customer
– Each release is implemented in a series of iterations, each iteration adds more

features/use-cases/stories
– Programmers turn the stories into smaller-grained tasks, which they individually

accept responsibility for
– The programmer turns a task into a set of test cases that will demonstrate that

the task is finished (Test Driven Development TDD)
– Working as pairs, the programmers make the test cases run, evolving the design

in the meantime to maintain the simplest possible design for the system as a
whole

UC Santa Barbara

Let’s get back to Capstone Projects

We said that this class it about learn by doing approach.

UC Santa Barbara

SW Specification (1): Requirements
Analysis and Documentation

• Discussion/debate on the functionality, input and output formats, types of
users, etc. is called requirements analysis
– Product managers and/or software developers try to figure out the

functionality required by the client
– Functional and non-functional requirements

• Writing precise requirements specifications can be challenging:

– Formal (mathematical) specifications are precise, but hard to read/write
– English is easy to read and write, but ambiguous

– Today’s solutions employ a combination of
• IEEE Software Requirements Specification (SRS), Product

Requirements & Design (PRD) – combined with system modeling,
user stories, case studies

• Should be a “living document” that evolves over time
– Starts with a vision statement

UC Santa Barbara

2-Page Vision Statement
• PDF via email to TA

– Project Title / Name (can change)
– Team name, members names/emails
– Identify the team lead and team scribe
– Industry Partner (company and the mentor)
– What the project is about?

• What problem the project is solving (what is innovation, the science,
and new core technical advance)?

• Why the problem is important
• How the problem is solved today (if it is)

– Identify the outcome of the project
– How do you plan to articulate and design a solution

• List the implementation platform and technologies will plan to use to
develop the solution

• List initial milestones and how you plan to achieve them
– Specification, design, prototyping, testing 64

UC Santa Barbara

Capstone Award Judging Criteria
• 5pt Science: Has the project the demonstrated application of important, interesting,

or new aspects of Computer Science? (e.g. Use of machine learning, non-trivial
algorithms, solid distributed system design techniques)

5pt Practice: Did the project adhere to techniques that represent the state of best
practice in industry throughout the development of the system (e.g. repo workflows,
test-driven development, issue tracking, or use of static or dynamic analysis tools)

5pt Scope: Has the team attacked a problem of significant (but appropriate) scale
and complexity. Does the problem require the development of significant new code
and/or the integration of complex exciting parts that are not normally made to
interface to on another? Was the project able to complete the goals that it set for
itself?

5pt Teamwork and Presentation: Do all the members of the team contribute
significantly (in their own ways)? Does the team take the process seriously and
communicate effectively with one another and the mentors? Is the project presented
both in written and spoken form in a way that is compelling and impressive? Has the
team developed an impressive demo?

65

UC Santa Barbara

Teamwork

• Requires people skills. Unless there is some understanding of
people, team will be unsuccessful and can fail.

Keys:
• Consistency

– Team members should all be treated in a comparable way without
favourites or discrimination.

• Respect
– Different team members have different skills and these differences

should be respected.
• Inclusion

– Involve all members and ensure that everyone’s views are considered
• Honesty

– Be honest about what is going well and what is going badly in a project

UC Santa Barbara

Teamwork

• Most software engineering is a group activity
– The development schedule for most non-trivial software projects is such

that they cannot be completed by one person working alone.

• A good group is cohesive and has a team spirit. The people
involved are motivated by the success of the group as well as
by their own personal goals.

• Group interaction is a key determinant of group performance.

• Flexibility in group composition is limited
– Lead must do the best they can with available people.

• Good communications across team is essential for success
– Promotes trust & understanding

UC Santa Barbara

CS189A F18 Next Steps
• Today

– Intro to SWE and vision statement
– Identify group leader and scribe

• Lead: motivator, picks up all loose ends, settles debates/makes decisions
• Scribe: records scrums, retrospectives, sprint planning, mentor/TA meetings

– Choose a team name
• Tomorrow: Lead contacts mentors (cc team) as introduction

– Setup weekly meeting times with team and company mentors
• This week draft/send vision statement

– Send your draft vision statement to mentors and TAs for feedback
– Look at the examples from prior years!

• Vision statement due next Tuesday by end of discussion

68

